
2418
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.10 OCTOBER 2009

PAPER Special Section on Information Theory and Its Applications

Adaptive Decoding Algorithms for Low-Density Parity-Check
Codes over the Binary Erasure Channel

Gou HOSOYA†a), Hideki YAGI††, Manabu KOBAYASHI†††, Members, and Shigeichi HIRASAWA††††, Fellow

SUMMARY Two decoding procedures combined with a belief-
propagation (BP) decoding algorithm for low-density parity-check codes
over the binary erasure channel are presented. These algorithms continue a
decoding procedure after the BP decoding algorithm terminates. We derive
a condition that our decoding algorithms can correct an erased bit which
is uncorrectable by the BP decoding algorithm. We show by simulation
results that the performance of our decoding algorithms is enhanced com-
pared with that of the BP decoding algorithm with little increase of the
decoding complexity.
key words: low-density parity-check code, belief-propagation decoding,
binary erasure channel, stopping set

1. Introduction

The combination of low-density parity-check (LDPC) codes
with a belief propagation (BP) decoding algorithm over the
binary erasure channel (BEC) has high decoding perfor-
mance with low decoding complexity [1], [2]. The decoding
complexity of the BP decoding algorithm for LDPC codes
is proportional to the code length. It is well known that the
BP decoding algorithm over the BEC cannot succeed when
a subset of erased bit positions forms a stopping set [3]. The
stopping set, which influences on the performance of the BP
decoding algorithm over the BEC, is closely related to loops
in the Tanner graph of LDPC codes.

To overcome a decoding failure caused by a stopping
set and enhance the performance of the BP decoding algo-
rithm, two approaches have been taken. The first approach is
adding redundant rows and columns for a given parity-check
matrix of a code to improve the performance of the BP de-
coding. This approach has been taken by K. Kasai et al. [7],
S. Sankaranarayanan and B. Vasic [10], and N. Kobayashi
et al. [11]. The second one is performing an adaptive proce-
dure after the BP decoding algorithm fails in decoding. This
approach has been taken by H. Pishro-Nik and F. Fekri [4],
and B.N. Vellambi and F. Fekri [12]. The decoding algo-

Manuscript received January 16, 2009.
Manuscript revised April 26, 2009.
†The author is with the Faculty of Science and Engineering,

Waseda University, Tokyo, 169-8555 Japan.
††The author is with Center for Frontier Science and Engi-

neering, the University of the Electro-Communications, Chofu-shi,
182-8585 Japan.
†††The author is with the Faculty of Engineering, Shonan Insti-

tute of Technology, Fujisawa-shi, 251-8511 Japan.
††††The author is with the Waseda Research Institute for Science

and Engineering, Waseda University, Tokyo, 169-8555 Japan, and
is with Cyber University, Japan.

a) E-mail: hosoya@m.ieice.org
DOI: 10.1587/transfun.E92.A.2418

rithms in [4] and [12] guess the values of some erased bits
to correct other erased bits.

A primary difference of these two approaches is as fol-
lows: The first approach needs the procedure of constructing
a redundant parity-check matrix only once beforehand. Al-
though the performance of the BP decoding algorithm with
a redundant parity-check matrix is better than that with an
original one, from the experimental results it is only ef-
fective for codes of short length [10]. On the other hand,
the second approach needs to perform an adaptive decoding
procedure, and this procedure is executed for each received
sequence. The performance of these improved BP decoding
algorithms is significantly enhanced from that of the BP de-
coding algorithm for codes with various lengths [2]. How-
ever these algorithms might output a wrong codeword as a
decoding result.

The maximum likelihood decoding (MLD) with the
Gaussian elimination (GE) is optimal, and performance gap
between the BP decoding and MLD is significantly large
[5]. D. Burshtein and G. Miller have proposed an MLD
algorithm which is a combination of the BP decoding al-
gorithm and the GE [8]. They have shown that MLD for
LDPC codes can be efficiently performed by combining the
BP decoding algorithm and the GE. Unfortunately the de-
coding complexity of this algorithm is proportional to the
cube of the number of erased bits.

In this paper, by taking the second approach we de-
velop two decoding algorithms of LDPC codes over the
BEC which require no guessing procedures. Our decod-
ing algorithms are also adaptive ones which perform after
the BP decoding algorithm fails without producing a wrong
codeword. We derive a condition that our decoding algo-
rithms can correct an erased bit which is uncorrectable by
the BP decoding algorithm. We show by simulation results
that the performance of the decoding algorithms is signif-
icantly enhanced from that of the BP decoding algorithm
with little increase of the decoding complexity when the era-
sure probability of a channel is small.

This paper is organized as follows. In Sect. 2, we de-
scribe LDPC codes, decoding for the BEC, and the BP de-
coding algorithm. In Sect. 3, we explain new decoding al-
gorithms. We mention related works of our decoding algo-
rithms in Sect. 3.1. The first decoding algorithm is presented
in Sect. 3.2 and we give some properties of this decoding al-
gorithm in Sect. 3.3. Similarly, the second decoding algo-
rithm is presented in Sect. 3.4. An overview of the whole
procedures of both algorithms is explained in Sect. 3.5. Fi-

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

HOSOYA et al.: ADAPTIVE DECODING ALGORITHMS FOR LDPC CODES OVER THE BEC
2419

nally, some simulation results and discussions are presented
in Sect. 4 and the conclusion is given in Sect. 5.

2. Preliminaries

2.1 LDPC Codes

Let H = [Hmn], m ∈ [1,M], n ∈ [1,N], be a parity-check
matrix of an LDPC code whose row and column lengths are
M and N, respectively†. Let c = (c1, c2, . . . , cN) ∈ FN

2 be
a codeword of an LDPC code where F2 denotes the binary
Galois field with elements {0, 1}. Then we have cHT = 0
for all c. Let ρi and λi denote the fractions of element
ones in H of rows and columns of Hamming weight i, re-
spectively. Let dmax and cmax be the maximum weights of
rows and columns, respectively. Let ρ(x) =

∑dmax

i=2 ρi xi−1 and
λ(x) =

∑cmax

i=2 λi xi−1 be the weight distribution functions of
rows and columns in H, respectively. The number of rows,

M, in H is given by M = N
∫ 1

0
ρ(x)dx/

∫ 1

0
λ(x)dx. In this pa-

per, we deal with binary C(N, λ(x), ρ(x)
)

LDPC codes. The
design rate R′ of C(N, λ(x), ρ(x)

)
LDPC codes is given by

R′ = 1 − M
N . The actual rate R of the codes satisfies R ≥ R′

since H is not necessarily a full rank matrix.
We define a loop of length 2L, L ≥ 2, in H as a

closed path consisting of the elements one in H at positions
(m1, n1), (m1, n2), (m2, n2), . . ., (mL, nL), and (mL, n1) where
both m1,m2, . . . ,mL and n1, n2, . . . , nL are distinct. We call
the minimum length of loops in H the girth of H.

2.2 Decoding for the BEC

We assume a codeword c is transmitted through the BEC.
The codeword c is disturbed by an erased sequence e =
(e1, e2, . . . , eN) ∈ {0, ε}N from the channel where ε denotes
an erasure, and the decoder receives a sequence y = c + e.
The addition of a binary bit and the erased bit are defined as
0+ε = ε and 1+ε = ε. Therefore the received bits are either
erased (unknown) or known bits.

Let N = [1,N] be an index set of the code bits or that
of the columns in H. Each element in both sets corresponds
to each other. For some index set χ ⊆ N , let cχ and Hχ
denote a subsequence of c and a submatrix of H indexed
by χ, respectively. In this paper, we express the column
positions in Hχ by the same indices of H. For example,
let N = [1, 8] and χ = {2, 4, 6, 8}, hence the position of
the leftmost column of Hχ is indexed by not 1 but 2. Let
χ = N \ χ be the complement set of χ.

From the definition of a parity-check matrix H, we can
write

cHT = cEHT
E + cĒHT

Ē = 0, (1)

where E ⊆ N denotes the index set of erased bits. Since cE,
HE, and HE are known to a decoder, we can rewrite Eq. (1)
as

cEHT
E = cEHT

E = s, (2)

where s = (s1, s2, . . . , sM) ∈ {0, 1}M is a syndrome sequence
obtained by calculating cEHT

E . Therefore decoding for the
BEC is to calculate the erased (unknown) sequence cE from
the simultaneous equations cEHT

E = s. Since c is a code-
word, cEHT

E = s has at least one solution. If this equation
has multiple solutions, then it cannot be corrected, which
results in error detection. MLD for the BEC can correct the
received sequence optimally by using the GE while the de-
coding complexity is proportional to the cube of the number
of erased bits [8].

2.3 BP Decoding Algorithm [2]

We define the following sets for all (m, n), m ∈ [1,M], n ∈
[1,N], such that Hmn = 1:

A(m) = {n | Hmn = 1}, B(n) = {m | Hmn = 1}.
Since this paper focuses on LDPC codes, the size of A(m)
and B(n) are assumed to be small values. Let sB =

(sB
1 , s

B
2 , . . . , s

B
M) and EB be a syndrome sequence and a set

of erased bit positions during an execution of the BP de-
coding algorithm, respectively. The values of sB and EB

are initialized to sB := s and EB := E at the beginning of
the algorithm, respectively. For some EB ⊆ N , let ΨB(m),
m ∈ [1,M], be an index set of the column positions of el-
ement ones at row m in HEB during an execution of the BP
decoding algorithm. The values of ΨB(m) are initialized to
ΨB(m) := {A(m) ∩ E} at the beginning of the algorithm.

We can rewrite cEHT
E = s as

∑
i∈ΨB(m)

ci = sB
m, m ∈ [1,M]. (3)

Note that sB
m is obtained by calculating

sB
m =

∑
i∈A(m)\ΨB(m)

ci. (4)

From Eq. (4), each iteration of the BP decoding algorithm
can correct an erased bit ci, i ∈ ΨB(m), iff |ΨB(m)| = 1.
In other words, the BP decoding algorithm can correct an
erased bit ci whenever a row of weight one exists in HEB .
The algorithm continues the procedure of calculating erased
bits until all the erased bits are corrected or there is no m ∈
[1,M] satisfying |ΨB(m)| = 1.

The BP decoding algorithm over the BEC constitutes
the following procedures:

[BP Decoding Algorithm over the BEC]
B1 (Initialization): Set sB := s and EB := E. For m ∈

[1,M], set ΨB(m) := {A(m) ∩ EB}.
B2 (Decision of Decoding Failure): If there exists m ∈

[1,M] such that |ΨB(m)| = 1, then go to B3. Otherwise
the algorithm fails.

B3 (BP Step): For any m ∈ [1,M] such that |ΨB(m)| = 1,

†For two integers i and j (i ≤ j), [i, j] denotes the set of integers
from i to j.

2420
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.10 OCTOBER 2009

perform the followings:

B3-1 (Correct an Erased Bit): Let i be an integer such
that ΨB(m) = {i}, set ci := sB

m, EB := EB \ {i}, and
ΨB(m) := ΨB(m) \ {i}.

B3-2 (Row Operation): For all m′ ∈ B(i) \ {m}, set
ΨB(m′) := ΨB(m′) \ {i} and sB

m′ := sB
m′ + sB

m.

B4 (Decision of Decoding Success): If EB � ∅, then go to
B2. Otherwise the algorithm succeeds. �

The BP decoding algorithm over the BEC fails when a
set of the erased bit positions contains a stopping set.

Definition 1 (Stopping set [3]): For some S ⊆ E, S � φ,
we call S a stopping set if the weights of all rows in a sub-
matrix HS are zero or at least two. �

The above definition is slightly modified from the original
one in [3], since we do not consider a non-empty stopping
set. At the step B2 in the BP decoding algorithm, the algo-
rithm stops when there does not exist m ∈ [1,M] satisfying
|ΨB(m)| = 1. At this time, weights of all rows in HEB , are
zero or at least two. Therefore EB is a stopping set† S.

Since the parity-check matrix H of LDPC codes is
sparse, the weight of each row has a small value. From
the above fact, the BP decoding algorithm can perform for
LDPC codes effectively with the decoding complexity pro-
portional to the number of ones in HE. Hence the BP decod-
ing algorithm is efficient for LDPC codes.

3. Proposed Decoding Algorithms

In this section, we develop two decoding algorithms of
LDPC codes over the BEC which perform adaptive decod-
ing procedures after the BP decoding algorithm stops in fail-
ure.

3.1 Relation with Other Methods

As was mentioned in Sect. 1, to overcome a decoding failure
caused by a stopping set, two approaches have been studied.
This paper takes the second approach and the proposed de-
coding algorithms considered here perform an adaptive pro-
cedure after the BP decoding algorithm fails [4], [9], [12].

An adaptive procedure is conducted for each transmit-
ted codeword. The decoding performance of these decod-
ing algorithms is significantly improved compared with that
of the BP decoding algorithm for codes of various lengths
[2]. The decoding algorithms by Pishro-Nik and Fekri [4],
and Vellambi and Fekri [12] guess the values of erased
bits which are not corrected by the BP decoding algorithm.
Clearly the performance of these algorithms depends on the
number of guessed bits and the way of choosing these bits.
Unfortunately, it is possible for these decoding algorithms
to generate a wrong codeword as a decoding result.

Our two decoding procedures do not take guessing pro-
cedures and hence it does not result in “mis-correction.”
They use the rows of weight greater than one to eliminate

the loops which satisfy a certain condition and make it pos-
sible to go back to the BP decoding algorithm.

3.2 Decoding Algorithm A

Recall that when the BP decoding algorithm stops in fail-
ure, the set of erased bit positions is represented by EB. Let
sP = cEB

HT
EB

. The decoding algorithm A tries to solve a

simultaneous equation cEB HT
EB
= sP. From Definition 1,

weights of all rows in HEB are zero or at least two since EB

is a stopping set S.

3.2.1 Overview of the Algorithm

The strategy of the decoding algorithm A is to make the sit-
uation where we can go back to the BP decoding algorithm
by producing the row of weight one. First we choose a row
of weight two and then select one column position of the
element one between them. Next this row is linearly com-
bined with the rows having the element one in a column
position that we select. If we perform row operations by us-
ing the row of weight greater than two, weight of a resulting
row in general becomes larger than that of former ones. On
the other hand, if we perform row operations by using the
row of weight two, weight of a resulting row remains equal
or decreases by two. Moreover this procedure is efficiently
performed for LDPC codes.

3.2.2 Procedure of Decoding Algorithm A

Let sP = (sP
1 , s

P
2 , . . . , s

P
M) and EP be a syndrome sequence

and a set of the erased bit positions during an execution of
the decoding algorithm A, respectively. The values of sP

and EP are initialized to sP := sB and EP := EB at the be-
ginning of the procedure, respectively. Let ES

P ⊆ EP and
MP ⊆ [1,M] be a subset of the erased bit positions EP and a
subset of the row positions [1,M], respectively. For a given
EP ⊆ N , let ΨP(m), m ∈ [1,M], be an index set of column
positions of the element one at a row m in HEP . The values
of ΨP(m) are initialized to ΨP(m) := {A(m)∩EP}. Note that
|ΨP(m)| � 1 for all m. For n ∈ EP, let ΔP(n) be an index set
of row positions of the element one at a column n of HEP .
The values of ΔP(n) are initialized to ΔP(n) := B(n).

At first, we choose a row m such that |ΨP(m)| = 2 where
ΨP(m) = {i1, i2}. The row m can be written as ci2 = ci1 + sP

m,
meaning that the erased bit ci2 can be represented by only ci1
so that we perform row operation using the row m with the
rows of m′ ∈ ΔP(i2) \ {m}. Here we can choose either i1 or i2
in any order from ΨP(m) at this step, since this choice does
not influence on the decoding result. More precious reason
is mentioned after the explanation of the algorithm. If the
row m′ satisfies ΨP(m′) ⊇ {i1, i2}, then the size of resulting
ΨP(m′) decreases by two. Clearly the erased bit ci2 and a row
m are not needed in the subsequent row operations until the

†Note that at this time, EB equals to the set of erased bit posi-
tions which cannot be corrected by the BP decoding algorithm.

HOSOYA et al.: ADAPTIVE DECODING ALGORITHMS FOR LDPC CODES OVER THE BEC
2421

erased bit ci1 is corrected, so we use a set of the rowsMP(:=
MP \ {m}) and a set of erased bits at ES

P(:= ES
P \ {i2}) for the

next row operation. By decreasing |ΨP(m′)|, this procedure
happens to make |ΨP(m′)| = 1. Then we can proceed the BP
decoding algorithm. We continue these procedures until all
erased bits are corrected or there are no rows m ∈ MP of the
weight one or two.

The decoding algorithm A consists of the BP decoding
and the procedure A. The main difference between the BP
decoding algorithm and the procedure A is the step P3.

[Procedure A]
P1 (Initialization): Set EP := EB and ES

P := EP. For
m ∈ [1,M], set ΨP(m) := {A(m) ∩ EB}. For n ∈ EP, set
ΔP(n) := B(n). SetMP := {m | m ∈ [1,M], |ΨP(m)| ≥ 2}.

P2 (Decision of Decoding Failure): If there exists m ∈
[1,M] such that |ΨP(m)| = 1, then go to P4. If |MP| = 0,
then the algorithm fails. If there exists m ∈ MP such that
|ΨP(m)| = 2, then go to P3. Otherwise, the algorithm fails.

P3 (Decoding A Step): For all m ∈ MP such that
|ΨP(m)| = 2, perform the followings:

P3-1 (Row Operation): For all m′ ∈ ΔP(j) \ {m} where
ΨP(m) = {i, j}, set ΨP(m′) :=

{
ΨP(m′) ∪ ΨP(m)} \{

ΨP(m′) ∩ ΨP(m)} and sP
m′ := sP

m′ + sP
m. No matter of

how to choose i and j from ΔP(m). If |ΨP(m′)| = 0,
then setMP :=MP \ {m′}.

P3-2 (Updating Column Index Sets): Set ΔP(i) :=
{
ΔP

(i) ∪ΔP(j)
} \ {ΔP(i) ∩ ΔP(j)

}
, MP := MP \ {m}, and

ES
P := ES

P \ { j}.
P4 (BP Step): For all m ∈ [1,M] such that |ΨP(m)| = 1,

perform the followings.

P4-1 (Correct an Erased Bit): For i such that ΨP(m) =
{i}, set ci := sP

m, EP := EP\{i}, andΨP(m) := ΨP(m)\{i}.
P4-2 (Row Operation): For all m′ ∈ ΔP(i) \ {m}, set
ΨP(m′) := ΨP(m′)\{i}, sP

m′ := sP
m′+sP

m, and ES
P := ES

P\{i}.
P5 (Decision of Decoding Success): If EP � ∅, then go to

P2. Otherwise the algorithm succeeds. �

Clearly row operation at P3-1 is equivalent to combining
two columns i and j. Therefore choosing either i1 or i2 from
ΨP(m) does not influence on a result of the decoding.

From the above algorithm, we have the following
lemma:

Lemma 1: During an execution of the decoding algorithm
A, |ΨP(m)| remains equal or decreases by two for m ∈ MP

in step P3. �

Note that performing the decoding algorithm A for HEP

is equivalent to perform the decoding algorithm A for the
condensed matrix HP defined as follows.

Definition 2 (Condensed Matrix): Let HP = [HP
mn], m ∈

MP, n ∈ ES
P
†. We set HP

mn = 1 if some (m, n) satisfies n ∈
ΨP

m, otherwise we set HP
mn = 0. This matrix HP is called the

condensed matrix. �

The size of a condensed matrix HP, |MP| × |ES
P|, is smaller

than or equal to the original matrix HEB . It is obvious from

the previous argument that once all erased bits in positions
ES

P are corrected, remaining erased bits in positions EP \ ES
P

can also be corrected. We explain this reason using the fol-
lowing example.

Example 1: We perform decoding algorithm A for a ma-
trix

HEP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 0 1
0 1 1 0
1 0 1 0
1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

if EP = {1, 2, 3, 4} and MP = {1, 2, 3, 4}. This time, HP =

HEP and ES
P = EP. Then we choose the second row and

perform row operations. Here we choose a bit position i2 =
2 (i1 = 3) and substitute c2 = c3 + sP

2 into rows ΔP(2) =
{1, 2, 4} \ {2} = {1, 4}. By this procedure, HEP and HP are
transformed as follows:

HEP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 1 1
0 1 1 0
1 0 1 0
1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , HP =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1
1 1 0
1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

withMP = {1, 2, 3, 4} \ {2} = {1, 3, 4} and ES
P = {1, 2, 3, 4} \{2} = {1, 3, 4}. �

In the above example, HP of the second row and the second
column are ignored. Note that an erased bit c2 will never
be evaluated after an erased bit c1 becomes a known bit.
Therefore performing decoding algorithm A for HEP to cor-
rect erasures in EP is equivalent to performing it for HP to
correct those in ES

P.

Remark 1: The decoding algorithm A fails when |MP| =
0. This case implies that the rank of the condensed matrix
is smaller than the number of its columns and the remaining
erased bits cannot be corrected even by the MLD. The algo-
rithm also fails when weights of all rows in HP are greater
than or equal to three. In this case, the steps P3 or P4 in the
algorithm cannot be performed afterward. �

3.3 Some Properties for Decoding Algorithm A

We show a condition such that the decoding algorithm A
at step P3 can correct erased bits. Note that a parity-check
matrix may have the duplicated row vectors, which do not
influence on the performance over the BEC, so we ignore all
but one of the same rows.

Lemma 2[6]: Assume that both rows and columns of a
parity-check matrix H have the minimum weight at least
two. For some stopping set S, the matrix HS has at least
one loop. �

†For avoiding a confusion, we assume that the index sets of row
and column positions of the condensed matrix HP are the same as
those of the original matrix H.

2422
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.10 OCTOBER 2009

Fig. 1 An example of the DC in Definition 3 and an assumption in the proof of Lemma 2. (a): The
positions (m1, n1), (m1, n2), (m2, n2), . . ., (mL, nL), and (mL, n1) form a loop of length 2L. (b): The
result after performing the row operation for rows of m1 and m2. (c): The result before performing row
operation for mL−1 and mL. (d): The result after performing row operation for mL−1 and mL and obtain
ΨP(mL) = N∗.

The above lemma shows that if there are no loops in a sub-
matrix of H, then the index set of bit positions of this sub-
matrix is not a stopping set. The key idea of the decoding
algorithm A is to eliminate loops in HP. The row operations
in the step P3 sometimes yield ΨP(m) for m ∈ MP such that
|ΨP(m)| = 1 and we can calculate an erased bit at position i,
ΨP(m) = {i}, by BP decoding (the step P4).

From Lemma 1, the decoding algorithm A does not in-
crease |ΨP(m)| for all m ∈ M. We then show a sufficient
condition such that this algorithm can decrease |ΨP(m)| by
two at the step P3. We first define a condition as follows:

Definition 3 (Diminishable Condition): When there exist
all distinct m1,m2, . . . ,mL ∈ MP and all distinct
n1, n2, . . . , nL, n∗1, n

∗
2, . . . , n

∗
a−2 ∈ ES

P, a > 2, such that
ΨP(mi) = {ni, ni+1}, i ∈ [1, L − 1] for L ≥ 2 and ΨP(mL) =
{n1, nL, n∗1, n

∗
2, . . . , n

∗
a−2} where |ΨP(mL)| = a, we say Dimin-

ishable Condition (DC) is satisfied. �

An example satisfying DC is shown in Fig. 1(a). From
the definition of DC, rows m1,m2, . . . ,mL and columns
n1, n2, . . . , nL form a loop of length 2L. From Lemma 3.3,
the matrix HEB always has at least one loop and may satisfy
DC.

Lemma 2: At step P3, the decoding algorithm A can de-
crease |ΨP(mL)| from a to a − 2 by row operations using the
rows m1,m2, . . . ,mL−1 when the DC in Definition 3 is satis-
fied.

Proof: We perform the row operation by linearly com-
bining a row m1 with a row m2 both of which have the el-
ement one at position j = n2. Then ΨP(m2) is modified
from {n2, n3} to {n1, n3}. We can see such an example in
Fig. 1(a) and this result in Fig. 1(b). Likewise, we perform
the row operation for rows m2, m3, . . ., mL−1 in order and
obtain ΨP(mL) = {n∗1, n∗2, . . . , n∗a−2}. �

From Lemma 1, we can decrease |ΨP(mL)| from a to a − 2.
We can see the result by before performing row operation for

the rows mL−1 and mL in Fig. 1(c) and after performing it in
Fig. 1(d). When a = 3, we can decrease |ΨP(mL)| from 3 to
1 and this fact immediately derives the following corollary.

Corollary 1: At step P3, the decoding algorithm A can
correct an erased bit if the DC with a = 3 is satisfied. �

Next we show a necessary condition of decreasing
|ΨP(mL)| from a to a − 2. Here we define the number of
steps as the number of executions of row operations.

Lemma 3: If the DC with a > 2 and L ≥ 2 does not sat-
isfy for some step l during the decoding algorithm A, the
algorithm always fails a decoding.

Proof: Assume that the DC does not hold at the step
l but does hold at the step l + 1. Assume that we perform
row operation with some row m′ such that ΨP(m′) = {ni, ni′ }
for i ∈ [2, L − 1] and assume that ni′ is eliminated from ES

P
such that ES

P := ES
P \ {ni′ } at the step l. Note that the cases

where i = 1 or i = L are omitted in this proof, but it is easily
derived if the cases of i ∈ [2, L − 1] holds. Then we have
ΨP(mi−1) = {ni−1, ni}, ΨP(mi) = {ni, ni+1} for distinct mi−1,
mi−2 and distinct ni−1, ni, ni+1 at step l + 1 by substituting
cni′ = cni + sP

mi′ into rows mi−1 and mi. To satisfy DC at
step l + 1, ΨP(mi−1) ⊃ {ni−1} and ΨP(mi) ⊃ {ni+1} hold with
|ΨP(mi−1)| = 2 and |ΨP(mi)| = 2 at step l. This means that
each ΨP(mi−1) and ΨP(mi) has either ni or ni′ . The values
of ΨP(mi−1) and ΨP(mi) take either the following four cases
(1) – (4) such that (1) ΨP(mi−1) = {ni−1, ni} and ΨP(mi) =
{ni, ni+1}, (2) ΨP(mi−1) = {ni−1, ni} and ΨP(mi) = {ni′ , ni+1},
(3) ΨP(mi−1) = {ni−1, ni′ } and ΨP(mi) = {ni, ni+1}, and (4)
ΨP(mi−1) = {ni−1, ni′ } and ΨP(mi) = {ni′ , ni+1}. But all of
these cases, DC is satisfied at the step l which contradicts
the assumption. Then the lemma is proved. �

Note that the decoding algorithm A may continue the de-
coding process for a while even after the DC is not satisfied.
It finally results in failure and HP satisfies the conditions in
Remark 1 at that moment.

HOSOYA et al.: ADAPTIVE DECODING ALGORITHMS FOR LDPC CODES OVER THE BEC
2423

Fig. 2 The transition of the number of rows of weight i ∈ [1, 6] for some
received sequence during an execution of the decoding algorithm A with a
code of N = 10000, λ(x) = x2, and ρ(x) = x5.

From the above argument, we have the following theo-
rem.

Theorem 1: Without increasing the row weight in all rows
of HP (or equivalently HEP), row weight a, a > 2, can be
decreased by two in the decoding algorithm A iff the DC
holds.

Proof: Obvious from Lemmas 1, 2, and 3.

The decoding algorithm A is just a substitution procedure
and does not guess the value of any erased bit. Therefore it
does not produce a wrong estimate for any erased bits. Then
we have the following theorem:

Theorem 2: The bit error performance of the decoding al-
gorithm A is better than or equal to that of the BP decoding
algorithm.

Proof: Obvious from the above discussion. �

Figure 2 shows transition of the number of rows of
weight i ∈ [1, 6] for some received sequence during the de-
coding algorithm A with a code of N = 10000, λ(x) = x2,
and ρ(x) = x5. We can verify that the number of rows of
weight two and three dominates the whole rows. The num-
ber of weight one rows decreases monotonically as the BP
decoding algorithm proceeds, and it takes zero at 2331 step.
This implies that the set of remaining erased bit positions is
a stopping set. After 2331 step, the procedure A is executed
by using the rows of weight two, and thereafter the number
of rows of weight two decreases monotonically until a row
of weight one is produced at 3345 step. After 3345 step, all
the remaining erased bits can be corrected by the BP decod-
ing algorithm. For other received sequences as well as this
example, the decoding algorithm A produces a few number
of rows of weight one can correct all the remaining erased
bits.

3.4 Decoding Algorithm B

3.4.1 Overview of the Decoding Algorithm

The following observation can be made when the decoding
algorithm A stops in failure:

Observation 1: The procedure A may produce new loops
in HP which do not exist in HE. �

Observation 1 is obvious from the fact that the procedure
A changes the positions of elements one by row operations
using a row of weight two in the step P3. As a result the
algorithm has a possibility to produce new loops of shorter
length compared with those in an original matrix HE.

Remark 1 and Observation 1 provide us with a prospect
to continue decoding effectively after the decoding algo-
rithm A stops in failure. To continue the decoding after the
decoding algorithm A, we extend the idea of the decoding
algorithm A such that by using rows of small weight and we
produce row of weight one or two by the row operations.
From Remark 1, there is no choice but to use rows of weight
three after the decoding algorithm A terminates, since the
minimum weight of rows in HP is at least three. However,
the row operations for a row of weight three and a row of
weight b, b ≥ 3, with one overlapped elements will increase
the weight of a resulting row from b to b+1, which makes it
difficult for the decoding algorithm A to resume. We show
an example of such cases with b = 3 below:[

1 1 1 0 0
0 0 1 1 1

]
⇒
[

1 1 1 0 0
1 1 0 1 1

]

The weight of second row of the above matrix increases
from three to four. On the other hand, if two rows of weight
three and b with two overlapped elements one exist, i.e.,
these two rows form a loop of length four, the row operation
decreases the weight of the resulting row from b to b − 1.
We show an example when b = 3 below:[

1 1 1 0
0 1 1 1

]
⇒
[

1 1 1 0
1 0 0 1

]

The second row of the above matrix decreases its weight
from three to two.

We here consider the loops of length four since the aim
is producing a new row of smaller weight with a reasonable
complexity†.

Let us summarize a new decoding algorithm called the
decoding algorithm B. Let HQ := HP be the condensed ma-
trix when the decoding algorithm A stops in failure. Then
we find, if exist, the pairs of rows which contains a loop
of length four and one of whose weight is three. We per-
form the row operation by linearly combining each pair of
rows obtained in the previous step to produce new rows of
smaller weight. If a row of weight one or two is produced

†The complexity of searching loops of length 2T , T ≥ 2, is
exponential in T .

2424
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.10 OCTOBER 2009

in HQ, then we go back to the decoding algorithm A for
HQ. If the decoding algorithm A stops in failure, we again
proceed the same procedure for searching loops. These pro-
cedures iterate pre-determined times I or until all erased bits
are corrected. If we cannot find any loops, then the decoding
algorithm fails. Note that a special care must be taken not to
increase the decoding complexity for the decoding. There-
fore, we do not search loops in the pairs of rows which do
not change from the previous iteration.

3.4.2 Procedure of Decoding Algorithm B

Let sQ = (sQ
1 , s

Q
2 , . . . , s

Q
M) and EQ be a syndrome sequence

and a set of the erased bit positions during an execution of
the procedure B, respectively. The values of sQ and EQ are
initialized to sQ := sP and EQ := EP at the beginning of the
procedure, respectively. Let ES

Q ⊆ EQ andMQ ⊆ [1,M] be
a set of the condensed erased bit positions and a set of the
condensed row positions, respectively. For some EQ ⊆ N ,
let ΨQ(m), m ∈ [1,M], be an index set of column positions
of the element one at row m in HEQ during the procedure B.
The values of ΨQ(m) are initialized to ΨQ(m) := ΨP(m). For
n ∈ EQ, let ΔQ(n) be an index set of row positions of the
element one in a column n of HEQ . The values of ΔQ(n) are
initialized to ΔQ(n) := ΔP(n).

The decoding algorithm B consists of the BP decoding,
the procedure A, and the procedure B, which is performed
after the decoding algorithm A stops in failure. The main
difference between the procedures A and B is the step Q3,
which performs searching loops of length four (the step Q3-
1) and eliminates them from the matrix HQ (the step Q3-2).

[Procedure B]
Q1 (Initialization): Set EQ := EP, ES

Q := ES
P,MQ :=MP,

and HQ := HP. Set I ≥ 1 be some constant integer. For
all m ∈ [1,M], set ΨQ(m) := ΨP(m) and sQ

m := sP
m. For

n ∈ ES
Q, set ΔQ(n) := ΔP(n). Set l := 1.

Q2 (Decision of Decoding Procedures): If there exists
m ∈ [1,M] such that |EQ(m)| = 1, then go to Q5. If
|MQ| = 0, then the algorithm fails. If there exists m ∈ MQ

such that |ΨQ(m)| = 2, then go to Q4. If there exists
m ∈ MQ such that |ΨQ(m)| = 3, then go to Q3. Other-
wise, the algorithm fails.

Q3 (Decoding B Step): If l ≥ I, then the algorithm fails.
Otherwise, perform the following procedures:

Q3-1 (Searching Loops): Set k := 0 and go to Q3-1-1.

Q3-1-1 (Main Procedure): For a pair of rows m0 and
m1 such that |ΨQ(m0)| = 3 or |ΨQ(m1)| = 3 where
m0 ∈ MQ and m1 ∈ {m > m0 | m ∈ ΔQ(n0), n0 ∈
ΨQ(m0)}, confirm whether |ΨQ(m0) ∩ ΨQ(m1)| ≥ 2
holds or not. If this equation holds, then set Lk :=
{m0,m1} and k := k + 1. Note that when l > 1, the
above procedure is performed for only m0 and m1

such that both ΨQ(m0) and ΨQ(m1) are updated at
Q3-2 in the iteration l − 1.

Q3-1-2 (Decision of Procedure Continue): If step

Q3-1-1 is performed for all m0 ∈ MQ, then set
sl := k and go to Q3-2. Otherwise go to Q3-1-1.

Q3-2 (Elimination of Loops) If sl = 0, then the algo-
rithm fails. Otherwise set k := 0 and go to Q3-2-1.

Q3-2-1 (Row Operation): For a pair of rows m0

and m1 such that {m0,m1} = Lk, if both ΔQ(m0)
and ΔQ(m1) are not updated at step Q3-2-1 in
the iteration l, then set ΨQ(m′) :=

{
ΨQ(m0) ∪

ΨQ(m1)} \ {ΨQ(m0) ∩ ΨQ(m1)} where m′ = mj,
j = arg maxi∈{0,1} |ΨQ(mi)|†. Set sQ

m′ := sQ
m0
+ sQ

m1

and k := k + 1, and go to Q3-2-2. Otherwise go to
Q3-2-3.

Q3-2-2 (Updating Column Index Sets): For all n′ ∈
ΨQ(m0) ∩ ΨQ(m1), set ΔQ(n′) := ΔQ(n′) \ {m′}. For
any n′′ ∈ ΨQ(m′) \ {ΨQ(m0) ∩ ΨQ(m1)} where m′ ∈
Lk \ {m′}, set ΔQ(n′′) := ΔQ(n′′) ∪ {m′}.

Q3-2-3 (Decision of Procedure Continue): If k =

sl, then go to Q4. Otherwise go to Q3-2-1.

Q4 (Decoding A Step): For all m ∈ MQ such that
|EQ(m)| = 2, perform the following procedures:

Q4-1 (Row Operation): For any m′ ∈ ΔQ(j)\{m}where
ΨQ(m) = {i, j}, set ΨQ(m′) :=

{
ΨQ(m′) ∪ ΨQ(m)} \{

ΨQ(m′) ∩ ΨQ(m)} and sQ
m′ := sQ

m′ + sQ
m. No matter of

how to choose i and j from ΔQ(m). If |ΨQ(m′)| = 0,
then setMQ :=MQ \ {m′}.

Q4-2 (Updating Column Index Sets): Set ΔQ(i) :={
ΔQ(i) ∪ΔQ(j)

}\ {ΔQ(i) ∩ ΔQ(j)
}
, MQ := MQ \ {m},

and ES
Q := ES

Q \ { j}.
Q5 (BP Step): For all m ∈ [1,M] such that |ΨQ(m)| = 1,

perform the following procedures:

Q5-1 (Correct an Erased Bit): For any i such that
ΨQ(m) = {i}, set ci := sQ

m, EQ := EQ \ {i}, and
ΨQ(m) := ΨQ(m) \ {i}.

Q5-2 (Row Operation): For any m′ ∈ ΔQ(i) \ {m}, set
ΨQ(m′) := ΨQ(m′) \ {i}, sQ

m′ := sQ
m′ + sQ

m, and ES
Q :=

ES
Q \ {i}.

Q6 (Decision of Decoding Success): If EQ � ∅, then go to
Q2. Otherwise the algorithm succeeds. �

The procedure B tries to generate row vectors of weight
one or two by linearly combining some rows of the con-
densed matrix HQ. To show some properties of this algo-
rithm, we give the following corollary as an immediate con-
sequence of Lemma 2.

Corollary 2: The decoding algorithm B can correct some
erased bits when the DC with a = 3 is satisfied for the new
rows of weight two produced at step Q3 of the algorithm.
Here HQ corresponds to HP in Lemma 2. �

An example that the decoding algorithm B correct an erased
bit is depicted in Fig. 3.

The decoding algorithm B is also a substitution proce-
dure and does not guess the value of any erased bit. There-

†If there exist two m′, then choose arbitrarily one of them.

HOSOYA et al.: ADAPTIVE DECODING ALGORITHMS FOR LDPC CODES OVER THE BEC
2425

Fig. 3 An example that the decoding algorithm B corrects an erased bit
n∗1. (a): Rows m0 and m1 such that Lt = {m0,m1} for t = [1, sl] with
|ΨQ(m0)| = 3 and |ΨQ(m1)| = 3 in the condensed matrix HQ. (b): These
rows are linearly combined and a new row m′(= m1) with |ΨQ(m′)| = 2 is
generated. In a result, a set of rows m1 and m2 forms a loop of length four
and satisfies the DC of Lemma 2 with a = 3 and L = 2. From the above
fact, an erased bit n∗1 can be corrected by the decoding algorithm B.

Fig. 4 The transition of the number of rows of weight i ∈ [1, 6] for some
received sequence during the decoding algorithm B with a code of N =
10000, λ(x) = x2, and ρ(x) = x5.

fore it does not produce a wrong estimate for any erased bits.
Then we have the following theorem:

Theorem 3: The bit error performance of the decoding al-
gorithm B is better than or equal to that of the decoding
algorithm A.

Proof: It is easy to see that the decoding algorithm B
has a larger decoding space than the decoding algorithm A,
since it only executes after the decoding algorithm A fails in
decoding. �

Figure 4 shows the transition of the number of rows of
weight i ∈ [1, 6] for some received sequence during the de-
coding algorithm B with a code of N = 10000, λ(x) = x2,
and ρ(x) = x5. After 1977 step, the procedure A is executed
and the number of rows of weight two decreases monotoni-
cally, and it reduces to zero at 3622 step. This implies that
decoding algorithm A stops in failure since the weights of
remaining rows become at least three. After 3622 step, the
procedure B is executed to try to produce rows of weight
two or one by using the rows of weight three. Therefore af-
ter 3622 step, the number of rows of weight three resume
decreasing. At 3831 and 3836 steps, rows of weight one
are produced and later all the remaining erased bits can be

Fig. 5 Overall procedures of the decoding.

corrected by the BP decoding algorithm†.

3.5 Overall Procedure of Decoding

We summarize an overall procedure of the decoding algo-
rithm in Fig. 5. For a given received sequence, first the BP
decoding is performed. If the BP decoding algorithm fails
in decoding, we can choose termination of the BP decod-
ing algorithm, execution of the procedure A, or execution of
Gaussian Elimination (GE) [8]. We call the combinations
of BP decoding algorithm with GE the algorithm BPM. If
the decoding algorithm A fails in decoding, we can choose
termination of the decoding algorithm A, execution of the
procedure B at most I times, or execution of GE. We call
the combinations of decoding algorithm A with GE the de-
coding algorithm AM. If the decoding algorithm B fails in
decoding, we can choose termination of the decoding algo-
rithm B or execution of GE. We call a combination of the
algorithm B and GE the decoding algorithm BM.

By using the decoding algorithms AM and BM, we can
usually perform MLD efficiently than by using the decoding
algorithm BPM, since in these cases GE is performed for the
condensed matrices (HP or HQ) whose columns (the number
of erased bits) are less than or equal to the matrix HEB .

Note that all of the mentioned algorithms do not result
in mis-correction, therefore decoding result is either “cor-
rected” or “error detected” but not in “error.”

4. Simulation Results

4.1 Conditions for Simulation

In order to verify the performance of the proposed decod-
ing algorithms, we show some simulation results. We use
four codes denoted by Ci for i ∈ [1, 4] whose parameters are
shown in Table 1. For each parameter of codes, we generate
three parity-check matrices from different seeds of random
generators. In order to show the effectiveness of the decod-
ing algorithm B, the girth of parity-check matrices of all the

†At 3832 step the BP decoding algorithm again stops in failure
and then the procedure A resumes.

2426
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.10 OCTOBER 2009

Table 1 The parameters (N, λ(x), ρ(x)) of the codes and their designed
rate R′ used for the simulation.

code N λ(x) ρ(x) R′

C1 1000 x2 x5 0.5

C2 10000 x2 x5 0.5

C3 1000 x2 x11 0.75

C4 10000 x2 x11 0.75

codes are restricted to six. Hence all codes used in the sim-
ulation have no loops of length four.

We compare the bit erasure rate (BER) and the average
number of total binary operations† of the BP decoding algo-
rithm [2] (denoted by “algorithm BP”), the decoding algo-
rithm A (denoted by “algorithm A”), the decoding algorithm
B (denoted by “algorithm B”), and the MLD.

For each decoding algorithm, we transmit at most 107

codewords over the BEC with channel erasure probability p
until 300 received words are failed in decoding.

4.2 Decoding Results

Figure 6 shows the decoding performance for C1 and C2 and
Fig. 7 shows that for C3 and C4. The horizontal axis and the
vertical axis represent the erasure probability p of the BEC
and the BER of decoding, respectively. For codes C1 and
C3 in Figs. 6 and 7, we also show the BER of the MLD,
respectively.

Figures 8 and 9 show the average numbers of total bi-
nary operations of each decoding algorithm for C1 and C3,
respectively. Using the same codes, Tables 2 and 3 show the
ratios of the average number of binary operations for search-
ing loops in the algorithm B to that of all the procedures in
the decoding. For evaluating these values in Tables 2 and
3, we averaged the number of binary operations over the re-
ceived sequence which cannot be corrected by the algorithm
A.

4.3 Discussions

4.3.1 For Codes C1 and C2 with R′ = 0.5

(1) The case for small p

From Fig. 6, the BER of the algorithm B becomes
smaller as I takes a large value, but this increment gets
smaller as well. The performance difference between the
algorithm BP and the algorithms A and B becomes large as
the code length N increases. For the case of code C1 with
p = 0.36 in Fig. 6, the BER of the algorithm A is 6.4 × 10−2

times as large as that of the algorithm BP. The BERs of the
algorithm B with I = 1 and 10 are 2.5× 10−2 and 1.6× 10−2

times lower than that of the algorithm BP, respectively. The
BERs of the algorithm B are almost equal when I ≥ 2. The
performance difference between the BP based decoding and
the MLD is quite large.

Figure 8 indicates that both algorithms A and B require
almost the same average number of total binary operations

Fig. 6 Decoding performance for codes C1 and C2.

Fig. 7 Decoding performance for codes C3 and C4.

as the algorithm BP, although the BERs of these algorithms
are different as shown in Figs. 6. We explain the reasons as
follows: The procedure A and the procedure B are executed

†Binary operations in this evaluation consist of AND and Ex-
clusive OR operations. The number of binary operations are eval-
uated in the following 1) – 4):

1) Calculation of s = cEHT
E in Eq. (2)

2) Row operations of B3-2 to evaluate ΨB(m′) and sB
m′

3) Row operations of P3-1 and P4-2 to evaluate ΨP(m′) and sP
m′

4) Row operations of Q3-1-1, Q3-2-1, Q4-1, and Q5-2 to evalu-
ate ΨQ(m0) ∩ ΨQ(m1), ΨQ(m′), and sQ

m′

For the BP decoding algorithm, we evaluate the cases 1) and 2).
For the decoding algorithm A, we evaluate from 1) to 3). For the
decoding algorithm B, we evaluate from 1) to 4). We averaged
these numbers over all the received sequence. For the calculation
of a + b, a, b ∈ {0, 1}, we count a binary operation unless a = 0
and b = 0 hold at the same time. Since we apply row operations
to sparse matrices, we only count binary operations for positions
whose element is non-zero (this is possible because only the posi-
tions of 1’s are stored, rather than the full binary representation).

HOSOYA et al.: ADAPTIVE DECODING ALGORITHMS FOR LDPC CODES OVER THE BEC
2427

Fig. 8 The average number of the total binary operations of each decod-
ing algorithm for code C1. The average number of total binary operations
of the algorithm B with I = 10 at p = 0.48 attains 22783.

Fig. 9 The average number of the total binary operations of each
decoding algorithm for code C3.

when the algorithm BP and the algorithm A fail in decod-
ing, respectively. Therefore if the algorithm BP succeeds
in decoding, then it does not need to continue the decoding
and the procedure A is not executed. If the word erasure
rate (WER) of the algorithm BP is low, then the procedures
A and B are rarely executed. This fact leads a big gap of
the BER performance between the algorithm A (B) and the
algorithm BP with a slight increase of the binary operations
when p is small. For example, the WER of the algorithm BP
when p = 0.16 is 1.38× 10−4 and the average number of the
binary operations for the algorithm BP and the procedure A†
are 2140.0 and 977.0, respectively. Then we have the aver-
age number of the total binary operations of the algorithm
A by calculating 2140.0 + 977.0 × 1.38 × 10−4 ≈ 2140.1.

From Table 2, we verified that the number of opera-
tions for searching loops dominates much time in the overall
decoding at various values of p. Once the procedure B is ex-

Table 2 The ratio of the average number of binary operations for search-
ing loops in the algorithm B to that of all the procedures in the decoding
using code C1.

p
I

1 2 5 10

0.36 0.417 0.442 0.447 0.448
0.38 0.416 0.447 0.455 0.456
0.4 0.419 0.453 0.461 0.462
0.42 0.432 0.469 0.477 0.477
0.44 0.461 0.494 0.500 0.500
0.46 0.496 0.518 0.520 0.520
0.48 0.517 0.679 0.840 0.913

Table 3 The ratio of the average number of binary operations for search-
ing loops in the algorithm B to that of all the procedures in the decoding
using code C3. When p = 0.12 and 0.14, the algorithm A always stops
decoding with |MP | = 0 which implies that the algorithm B cannot be per-
formed and these facts are expressed as “–.”

p
I

1 2 5 10

0.12 – – – –
0.14 – – – –
0.16 0.320 0.400 0.402 0.401
0.18 0.361 0.472 0.471 0.468
0.2 0.362 0.480 0.479 0.476
0.22 0.244 0.370 0.558 0.695
0.24 0.265 0.413 0.630 0.769

ecuted, the number of these operations drastically increases
but thereafter not become large as I increases, since the algo-
rithm performs the effective search for loops. Note that the
algorithm B is rarely executed compared with the algorithm
BP for small p, since most trials of decoding terminate in
succeed at the algorithm BP or A. Therefore the increment
of the decoding operations of the algorithm B does not af-
fect the overall decoding operations for small p as shown in
Fig. 8.

(2) The case for large p

From Figs. 6 and 8, although the average number of to-
tal binary operations of the algorithms A and B increases,
the BERs of all the algorithms are almost the same. Since
the number of rows of small weight becomes small and both
algorithms do not satisfy the DCs in Lemma 2 and Corollary
2 as p increases, the BERs of all the algorithms are almost
the same. From Fig. 8, as the number of performing the pro-
cedure B becomes large (equivalently as p increases), the
number of operations for the decoding also increases. More-
over this number of operations increases as I becomes large.
This is because (i) searching loops dominates much time in
decoding, and (ii) the number of rows of weight three does
not decrease monotonically as the decoding proceeds.

We then discuss a relationship between the decoding
complexity and the value of p. The complexities of the algo-
rithm BP and the algorithm A do not always increase with p.
Their complexities increase as the number of rows of weight

†The average number of the binary operations for the proce-
dure A is averaged over the received sequences which cannot be
corrected by the algorithm BP.

2428
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.10 OCTOBER 2009

one and/or two becomes large in the matrix HP, which is of-
ten for small p. On the contrary, these algorithms cannot
continue the decoding process when there do not exist such
rows. As p becomes large, the number of rows of weight
one and two becomes small, and in result, so do the decod-
ing complexities.

4.3.2 For Codes C3 and C4 with R′ = 0.75

From Fig. 7, the performance difference between the algo-
rithm BP and the algorithm A and that between the algo-
rithm BP and the algorithm B for C3 and C4 are smaller than
those for the case of C1 and C2.

For the case of the code C3 with p = 0.12 and p = 0.14,
the BER of both algorithms A and B are the same as that of
MLD (this fact can be verified from Table 3). This is be-
cause all the decoding trials terminate during the execution
of the algorithms BP and A. We confirmed that the size of
the resulting condensed matrix is zero when the algorithm
A stops in failure, so the decoding could not proceed further
(This case is mentioned in Remark 1.). Since the algorithm
BP stops in failure with a few remaining erased bits (about
six bits on average) in these cases, only a small number of
adaptive binary operations (about 21 operations on average)
for procedure A is required to achieve the same performance
as MLD. Although the performance differences between the
algorithm BP and those of the algorithms A and B become
large as N increases, this difference is not larger than the
case for the codes with R′ = 0.5. Similar to the case for
the codes with R′ = 0.5, once the procedure B is executed,
the number of operations for searching loops dominates the
whole procedures of decoding as shown in Table 3.

4.3.3 Comparison with Other Methods

(1) Decoding Algorithm A

From Lemma 2, the algorithm A can correct an erased
bit by eliminating an arbitrary length of loops in the con-
densed matrix HP. Since this algorithm can correct an
erased bit in some step of the algorithm when the DC with
a = 3 is satisfied, the algorithm is valid for loops of arbitrary
length 2L. Hence it is valid for LDPC codes with large girth.
We verified that for some received sequence, it could elim-
inate loops of length 20 for the code C1 without searching
such loops.

Previously, methods using an elimination technique of
loops by concatenating the redundant rows and columns
for a parity-check matrix H in advance, have been inves-
tigated [7], [10], [11]. In [11], a similar condition for cor-
recting some erased bits by this concatenation has been de-
rived. However this method has the following disadvantages
compared with the algorithm A. The complexity for search-
ing loops in H is exponential in the length of loops, which
makes it difficult for this approach to have better perfor-
mance as the algorithm A. Hence this approach is not suit-
able for LDPC codes with large girth. Due to these reasons,
it has no choice but to search loops with only short length,

and the performance improvement of this method is limited
compared with the algorithm A. Moreover if more than one
loop exists in some row, this method cannot eliminate all of
these loops.

The performance of the previous approach for guessing
erased bits as some values [4], [12] depends on a way of
choosing these bits, guessed values, and the number of them.
By guessing erased bits, these algorithms may have a miss-
correction which has never been arised for our approach.

(2) Decoding Algorithm B

We use LDPC codes of its girth six. So the per-
formance improvement obtained by the algorithm B arises
from newly produced loops of length four by the algorithm
A (See Observation 1). Although the decoding algorithms
of the former works [7], [10], [11] are effective for LDPC
codes with short length of loops, this algorithm is effective
for those loops of arbitrary length.

4.4 Decoding Complexity of MLD

As described in Sect. 3.5, the algorithms AM and BM per-
form GE efficiently by using the condensed matrix HP and
HQ, respectively. Hence the decoding complexity of GE
strongly depends on the size of these matrices. We compare
the average number of total binary operations of the decod-
ing algorithm BPM (denoted by “algorithm BPM”), the de-
coding algorithm AM (denoted by “algorithm AM”), and
the decoding algorithm BM (denoted by “algorithm BM”).
As a reference, we also show the average number of total bi-
nary operations of performing only GE from the beginning
(denoted by “OGE”).

Figure 10 shows the average number of total binary op-
erations of these decoding algorithms for the code C1. Since
the When p is relatively small, the average numbers of to-
tal binary operations of the algorithm AM and that of the
algorithm BM are almost the same as that of the algorithm

Fig. 10 The average number of total binary operations of each MLD
algorithm for C1.

HOSOYA et al.: ADAPTIVE DECODING ALGORITHMS FOR LDPC CODES OVER THE BEC
2429

Table 4 The ratio of the average number of binary operations for GE to
that of all the procedures in the decoding for code C1.

p BPM AM
BM

I = 1 I = 2 I = 10

0.36 0.930 0.819 0.704 0.709 0.718
0.38 0.940 0.845 0.745 0.752 0.759
0.4 0.952 0.870 0.783 0.786 0.788
0.42 0.968 0.913 0.844 0.844 0.844
0.44 0.980 0.947 0.899 0.897 0.895
0.46 0.989 0.982 0.952 0.950 0.950
0.48 0.994 0.985 0.968 0.911 0.849

Table 5 The average number of columns of each matrix for code C1 after
the algorithms BP, A, and B stops in failure. The original number of HE is
pN = 1000p.

p HEB HP HQ HQ HQ

(I = 1) (I = 2) (I = 10)

0.36 212.4 82.5 85.0 88.1 92.9

0.38 223.6 91.3 92.0 97.2 101.4
0.4 237.2 99.0 100.7 104.1 108.2
0.42 262.3 117.3 116.7 120.6 123.9
0.44 290.3 138.2 137.8 139.9 142.8
0.46 335.4 176.6 173.7 175.3 176.1
0.48 383.4 229.8 227.4 227.2 227.2

BPM. On the contrary, as p increases, these numbers of the
algorithm AM and the algorithm BM are lower than those
of OGE and the algorithm BPM. Since most decoding tri-
als are failed by the procedure B for large p, the number
of performing each procedure is almost the same. To see
the decoding complexity of GE in detail, Table 4 shows the
ratio of the average number of binary operations for GE to
that of all the procedures in decoding†. It can be verified
that the number of binary operations of GE combined with
all the algorithms dominates almost all the procedures in the
decoding.

Table 5 shows the average numbers of columns of each
matrix for C1. From this table, the numbers of columns of
HP and HQ are smaller than those of HE and HEB , and these
numbers are almost the same for HP and HQ. Therefore it
is obvious that the algorithms AM and BM can perform GE
more efficiently than the algorithm BPM (and than OGE,
naturally). Note that the average number of columns for
HQ when I = 10 are larger than those when I = 1, since the
algorithm BPM only performs GE for the received sequence
with large number of erasures which cannot be corrected by
the decoding algorithm B with I = 10.

5. Conclusion and Further Work

We have developed new iterative decoding algorithms of
LDPC codes over the BEC. Both algorithms perform sub-
stitution procedures of the matrix H and can eliminate the
loops in a submatrix of H whose column positions are in-

†For evaluating these numbers of the algorithm BPM, AM, and
BM in Table 4, we averaged the number of binary operations over
the received sequences which cannot be corrected by the algorithm
BP, A, and B, respectively.

dexed by a stopping set. In Theorem 1, we have shown a
correctable condition for an erased bit that cannot be cor-
rected by the BP decoding algorithm. The derived condition
is valid for the arbitrary length of loops. From simulation
results, BERs of our decoding algorithms are lower than
that of the BP decoding algorithm when the channel erasure
probability takes small value.

Characterizing a relationship between decoding com-
plexity and the value of p seems difficult but a challenging
problem. Development of an analytical method of the per-
formance of the proposed decoding algorithms is needed.
For example, the residual degree distribution approach has
been developed [2] to analytically track the behavior of row
weight at each decoding step in the BP decoding algorithm.
In Figs. 2 and 4, although we have shown the transition of
weight of rows based on the simulation results. Evaluation
of their performance by applying such approaches [2],[13,
Theorem 3.106] to our algorithms is desired.

Acknowledgments

The authors wish to thank the reviewers for their thor-
ough and conscientious reviewing for the paper. The au-
thors would like to thank Prof. M. Goto at Waseda Uni-
versity and Prof. B. Kurkoski at the University of Electro-
Communications for their valuable comments and discus-
sions. This work is partially supported by the Ministry of
Education, Culture, Sports, Science and Technology, Grant-
in-Aid for Young Scientists (Start-up), No. 20860074 and
(B), No. 20760249.

References

[1] R.G. Gallager, “Low density parity check codes,” IRE Trans. Inf.
Theory, vol.8, pp.21–28, Jan. 1962.

[2] M. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D.A. Spielman,
“Efficient erasure correcting codes,” IEEE Trans. Inf. Theory, vol.47,
no.2, pp.569–584, Feb. 2001.

[3] C. Di, D. Proietti, I.E. Telatar, T.J. Richardson, and R.L. Urbanke,
“Finite-length analysis of low-density parity-check codes on the
binary erasure channel,” IEEE Trans. Inf. Theory, vol.48, no.6,
pp.1570–1579, June 2002.

[4] H. Pishro-Nik and F. Fekri, “On decoding of low-density parity-
check codes over the binary-erasure channel,” IEEE Trans. Inf. The-
ory, vol.50, no.3, pp.439–454, March 2004.

[5] D. Burshtein and G. Miller, “Asymptotic enumeration methods for
analyzing LDPC codes,” IEEE Trans. Inf. Theory, vol.50, no.6,
pp.1115–1131, June 2004.

[6] T. Tian, C. Jones, J.D. Villasenor, and R.D. Wesel, “Selective avoid-
ance of cycles in irregular LDPC code construction,” IEEE Trans.
Commun., vol.52, no.8, pp.1242–1247, Aug. 2004.

[7] K. Kasai, T. Shibuya, and K. Sakaniwa, “A code-equivalent trans-
formation removing cycles of length four in Tanner graphs,” IEICE
Technical Report, IT2004-42, Sept. 2004.

[8] D. Burshtein and G. Miller, “An efficient maximum-likelihood de-
coding of LDPC codes over the binary erasure channel,” IEEE Trans.
Inf. Theory, vol.50, no.11, pp.2837–2844, Nov. 2004.

[9] G. Hosoya, T. Matsushima, and S. Hirasawa, “A decoding method
of low-density parity-check codes over the binary erasure channel,”
Proc. 27th Symposium on Information Theory and its Applications
(SITA2004), pp.263–266, Gifu, Japan, Dec. 2004.

2430
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.10 OCTOBER 2009

[10] S. Sankaranarayanan and B. Vasić, “Iterative decoding of linear
block codes: A parity-check orthogonalization approach,” IEEE
Trans. Inf. Theory, vol.51, no.9, pp.3347–3353, Sept. 2005.

[11] N. Kobayashi, T. Matsushima, and S. Hirasawa, “Transformation
of a parity-check matrix for a message-passing algorithm over the
BEC,” IEICE Trans. Fundamentals, vol.E89-A, no.5, pp.1299–1306,
May 2006.

[12] B.N. Vellambi and F. Fekri, “Results on the improved decoding
algorithm for low-density parity-check codes over the binary era-
sure channel,” IEEE Trans. Inf. Theory, vol.53, no.4, pp.1510–1520,
April 2007.

[13] T. Richardson and R. Urbanke, Modern coding theory, Cambridge
University Press, 2008.

Gou Hosoya was born in Yokohama,
Japan, on Dec. 14, 1979. He received the B.E.
degree, M.E. degree, and D.E. degree in In-
dustrial and Management Systems Engineering
from Waseda University, Tokyo, Japan, in 2002,
2004, and 2008, respectively. From 2008, he has
been a research associate in the Department of
Industrial and Management Systems Engineer-
ing at Waseda University. His research interests
are coding theory and information theory. He is
a member of the IEEE, the Society of Informa-

tion Theory and Its Applications.

Hideki Yagi was born in Yokohama, Japan,
on Oct. 14, 1975. He received the B.E. de-
gree, M.E. degree, and Dr.E. degree in Industrial
and Management Systems Engineering from
Waseda University, Tokyo, Japan, in 2001, 2003
and 2005, respectively. From 2005 to 2008, he
was with Media Network Center, Waseda Uni-
versity as a research associate and an Assistant
Professor. He is currently an assistant professor
in Center for Frontier Science and Engineering
at the University of Electro-Communications,

Tokyo, Japan. His research interests are information theory and coding
theory. He is a member of the Society of Information Theory and its Ap-
plications and IEEE.

Manabu Kobayashi was born in Yoko-
hama, Japan, on Oct. 30, 1971. He received the
B.E. degree, M.E. degree and Dr.E. degree in
Industrial and Management Systems Engineer-
ing form Waseda University, Tokyo, Japan, in
1994, 1996 and 2000, respectively. From 1998
to 2001, he was a research associate in Indus-
trial and Management Systems Engineering at
Waseda University. He is currently an associate
professor of the Department of Information Sci-
ence at Shonan Institute of Technology, Kana-

gawa, Japan. His research interests are coding and information theory and
data mining. He is a member of the Society of Information Theory and Its
Applications, Information Processing Society of Japan and IEEE.

Shigeichi Hirasawa was born in Kobe,
Japan, on Oct. 2, 1938. He received the B.S. de-
gree in mathematics and the B.E. degree in elec-
trical communication engineering from Waseda
University, Tokyo, Japan, in 1961 and 1963,
respectively, and the Dr.E. degree in electrical
communication engineering from Osaka Uni-
versity, Osaka, Japan, in 1975. From 1963 to
1981, he was with the Mitsubishi Electric Cor-
poration, Hyogo, Japan. From 1981 to 2009, he
was a professor of the School of Science and En-

gineering, Waseda University, Tokyo, Japan. He is currently a research
consultant at the Waseda Research Institute for Science and Engineering,
Waseda University, and a consultant at Cyber University. In 1979, he was a
Visiting Scholar in the Computer Science Department at the University of
California, Los Angeles (CSD, UCLA), CA. He was a Visiting Researcher
at the Hungarian Academy of Science, Hungary, in 1985, and at the Uni-
versity of Trieste, Italy, in 1986. In 2002, he was also a Visiting Faculty at
CSD, UCLA. From 1987 to 1989, he was the Chairman of the Technical
Group on Information Theory of IEICE. He received the 1993 Achieve-
ment Award and the 1993 Kobayashi-Memorial Achievement Award from
IEICE. In 1996, he was the President of the Society of Information Theory
and Its Applications (Soc. of ITA). His research interests are information
theory and its applications, and information processing systems. He is an
IEEE Life Fellow, and a member of Soc. of ITA, and the Information Pro-
cessing Society of Japan.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

