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A Linear Programming Bound for Unequal Error Protection Codes
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Abstract— In coding theory, it is important to calculate
an upper bound for the size of codes given the length and
minimum distance. The Linear Programing (LP) bound is
known as a good upper bound for the size of codes. On the
other hand, Unequal Error Protection (UEP) codes have
been studied in coding theory. In UEP codes, a codeword
has special bits which are protected against a greater num-
ber of errors than other bits. In this paper, we propose a LP
bound for UEP codes. Firstly, we generalize the distance
distribution (or weight distribution) of codes. Under the
generalization, we lead to the LP bound for UEP codes.
Lastly, we compare the proposed bound with a modified
Hamming bound.
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1 Introduction
One of the most basic problem in coding theory is to

find the largest code given the length n and minimum
distance d. And it is also important to calculate an
upper bound for the size of codes, in order to evaluate
codes found by certain methods.

Many upper bounds have been proposed, for exam-
ple the Hamming bound, the Singleton bound and so on
[6]. Delsarte proposed the Linear Programming (LP)
bound [1]. It is known that the LP bound is better
upper bound than most of the other bounds in many
parameters.

On the other hand, Unequal Error Protection (UEP)
codes were proposed by Masnick and Wolf [7]. UEP
codes are divided to two types. The one is bit-wise UEP
codes [7], and the other is message-wise UEP codes [2],
[3]. In this paper, we focus on bit-wise UEP codes.

In UEP codes, a codeword has special bits which
are protected against a greater number of errors than
other bits. Thus a criterion different from the minimum
distance is needed to evaluate UEP codes.

In this paper, we propose a LP bound for UEP
codes. Firstly, we generalize the distance distribution
(or weight distribution) of codes. Under the generaliza-
tion, we lead to the LP bound for UEP codes. Lastly,
we compare the proposed bound with a modified Ham-
ming bound.

This paper is organized as follows. In Section 2, we
describe some basic notations and definitions. Espe-
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cially, we describe the definition of UEP codes. Also,
we show the Hamming bound in Section 2. In Section
3, we show the LP bound proposed by Delsarte. In Sec-
tion 4, we propose a LP bound for UEP codes. Most
of the proof of theorems in Section 4 are described in
Section 5. Lastly, we conclude our research in Section
6.

2 Preliminary
For any x ∈ {0, 1}n, let wt(x) be the Hamming

weight of x. Let ⊕ be the exclusive-or operation, and
· be the and operation. For any x = (x1, x2, . . . , xn),
y = (y1, y2, . . . , yn) ∈ {0, 1}n, let x⊕y = (x1⊕y1, x2⊕
y2, . . . , xn⊕yn), and x·y = x1 ·y1⊕x2 ·y2⊕· · ·⊕xn ·yn.
For any set A, let |A| be the number of elements of A.

The binomial coefficient
(

x
m

)
is defined by

(
x
m

)
=


x(x−1)···(x−m+1)

m! ,
if m is a positive integer ,

1 if m = 0 ,
0 otherwise ,

(1)

where x is any real number, and m! = 1·2·· · ··(m−1)·m,
0! = 1.

Definition 1 ((n,M,D) binary code) Let n be any
positive integer and D ⊆ {0, 1}n. If a subset C ⊆
{0, 1}n satisfies

|C| = M, (2)
∀x, y ∈ C,∀z ∈ D, x ⊕ y 6= z, (3)

then C is called an (n,M,D) binary code.

In this paper, we consider only binary codes, so we
omit the word “binary” in the following. If a code C is
a linear vector space, then C is called a linear code.

If

D = {z ∈ {0, 1}n|wt(z) ≤ d − 1}, (4)

then an (n,M,D) code has the minimum distance d,
and this code is also called an (n,M, d) code.

Next, we define UEP codes.
Definition 2 (unequal error protection code) An
(n, M,D) code is called an ((n1, n2),M, (d1, d2)) un-
equal error protection (UEP) code, if

D = {z = (z1,z2) ∈ {0, 1}n1 × {0, 1}n2 |
(z1 6= 0, wt(z) ≤ d1 − 1) or

(wt(z) ≤ d2 − 1)}, (5)

where n = n1 + n2 and d1 ≥ d2.
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In this paper, we consider UEP codes which have
only two error protection levels, d1 and d2, for simplic-
ity. An ((n1, n2),M, (d1, d2)) UEP code can correct
errors included in an error pattern E,

E = {e = (e1,e2) ∈ {0, 1}n1 × {0, 1}n2 |
(e1 6= 0, wt(e) ≤ t1) or

(wt(e) ≤ t2)}, (6)

where ti = bdi−1
2 c, i = 1, 2.

Next, we show one of upper bounds for (n, M,D)
codes. Later, this bound is compared with the LP
bound.
Theorem 1 Let E ⊆ {0, 1}n and let D = {e1 ⊕ e2|
e1, e2 ∈ E}. Then any (n, M,D) codes satisfy

M ≤ 2n

|E|
. (7)

If E = {e ∈ {0, 1}n|wt(e) ≤ t} and D = {z ∈
{0, 1}n|wt(z) ≤ 2t}, then Eq. (7) becomes

M ≤ 2n∑t
i=0

(
n
i

) . (8)

Eq. (8) is called the Hamming bound [6, Ch.1 Theorem
6].

3 LP bounds
In this section, we show the LP bound for (n, M, d)

codes proposed by Delsarte [1]. In Section 3.1, we show
some definitions and theorems, which are used to show
the LP bound. In Section 3.2, we show the LP bound.

3.1 Basic Theorems
Definition 3 (W (n)

i ) For any positive integer n, W
(n)
i

(= Wi), i = 0, 1, . . . n, are defined by

W
(n)
i := {w ∈ {0, 1}n|wt(w) = i}. (9)

If there is no danger of confusion we omit the n.
The distance distribution of a code C(⊆ {0, 1}n) is

(n + 1)-tuple (A0, A1, . . . , An), where

Ai =
1
|C|

∑
x∈C

∣∣∣{y ∈ C|x ⊕ y ∈ Wi}
∣∣∣, i = 0, 1, . . . , n. (10)

If C is a linear code, the distance distribution Ai is
equal to the weight distribution A′

i, that is

Ai = A′
i

(
=

∣∣∣{y ∈ C|y ∈ Wi}
∣∣∣) , i = 0, 1, . . . , n. (11)

Definition 4 (Krawtchouk polynomial) For any pos-
itive integer n, the Krawtchouk polynomial Pi(z; n)(=
Pi(z)) is defined by

Pi(z;n) :=
i∑

k=0

(−1)k

(
z
k

)(
n − z
i − k

)
,

i = 0, 1, . . . n, (12)

where z is an indeterminate. If there is no danger of
confusion we omit the n.

The next Theorem 2, 3, and 4, give properties of
the Krawtchouk polynomial.

Theorem 2 [4, Theorem 4.10] If v ∈ Wj, then∑
u∈Wi

(−1)u·v = Pi(j). (13)

where i, j ∈ {0, 1, . . . , n}.

Theorem 3 [6, Ch.5 Theorem 16] For any a, b ∈
{0, 1, . . . , n},

n∑
i=0

(
n
i

)
Pa(i)Pb(i) = 2n

(
n
a

)
δa,b, (14)

where δa,b = 1, if a = b, δa,b = 0, if a 6= b is the
Kronecker symbol.

Theorem 4 [6, Ch.5 Theorem 17] For any a, b ∈
{0, 1, . . . , n},(

n
a

)
Pb(a) =

(
n
b

)
Pa(b). (15)

The next Theorem 5 is called the MacWilliams the-
orem. This theorem shows a relationship between a
code C and the dual code C⊥.

Theorem 5 [6, Ch.5 Theorem 1] Let C(⊆ {0, 1}n) be
a linear code, and C⊥ be the dual code of C. Let Ai

and A⊥
i , i = 0, 1, . . . , n, be the distance distribution of

C and C⊥. Then,

A⊥
i =

1
|C|

n∑
j=0

AjPi(j), i = 0, 1, . . . , n. (16)

In Theorem 5, C is constrained to a linear code.
But, even if C is a nonlinear code, the MacWilliams
theorem holds [6, Ch.5 Sec.5].

The next theorem 6 is proposed by Delsarte. This
theorem is especially important in the LP bound.

Theorem 6 [6, Ch.5 Theorem 6] Let C(⊆ {0, 1}n) be
a code, and Ai, i = 0, 1, . . . , n be the distance distribu-
tion of C. Then,

1
|C|

n∑
j=0

AjPi(j) ≥ 0, i = 0, 1, . . . , n. (17)

The left-hand side of Eq. (17) is equal to the right-
hand side of Eq. (16). Thus, we can see that the dis-
tance distribution of the dual code is non-negative.

3.2 LP Bounds
Definition 5 (MLP (n; d)) MLP (n; d) is defined by the
solution to the following linear programming problem:
choose real numbers A0, A1, . . . , An so as to

maximize

n∑
i=0

Ai (18)
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subject to the constraints

A0 = 1, (19)
Ai = 0, i = 1, 2, . . . , d − 1, (20)
Ai ≥ 0, i = d, d + 1, . . . , n, (21)

n∑
j=0

AjPi(j) ≥ 0, i = 0, 1, . . . n. (22)

The next Theorem 7 gives the LP bound.
Theorem 7 [6, Ch.17 Theorem 18] Any (n,M, d) codes
satisfy

M ≤ MLP (n; d). (23)

The next Theorem 8 compares the LP bound with
the Hamming bound, Eq. (8).
Theorem 8 [6, Ch.17 Problem(16)] Let d = 2t + 1.
Then

MLP (n; d) ≤ 2n∑t
i=0

(
n
i

) . (24)

Theorem 8 means that the LP bound is a better
upper bound than the Hamming bound.

4 LP Bounds for UEP Codes
In this section, we propose a LP bound for UEP

codes. In Section 4.1, we generalize the definitions and
theorems in Section 3.1. In Section 4.2, we show the
LP bound for UEP codes.

4.1 Generalization of Basic Theorems
Definition 6 (W (n1,n2)

i,j ) Let n, n1 and n2 be any pos-

itive integers, where n = n1 + n2. Then W
(n1,n2)
i,j (=

Wi,j), i = 0, 1, . . . , n1, j = 0, 1, . . . , n2 are defined by

W
(n1,n2)
i,j := {w = (w1, w2) ∈ {0, 1}n1 × {0, 1}n2 |

wt(w1) = i, wt(w2) = j}. (25)

And, we let

WU := {W (n1,n2)
i,j |i = 0, 1, . . . , n1, j = 0, 1, . . . , n2}. (26)

If there is no danger of confusion we omit the n1, n2.
If n1 = n and n2 = 0, then Wi,j is equal to Wi,

defined by Eq. (9).
The distribution based on WU of a code C(⊆ {0, 1}n)

is (n1 + 1) × (n2 + 1) array (Bi,j)i=0,1,...n1,j=0,1,...n2 ,
where

Bi,j =
1
|C|

∑
x∈C

∣∣∣{y ∈ C|x ⊕ y ∈ Wi,j}
∣∣∣,

i = 0, 1, . . . , n1, j = 0, 1, . . . , n2. (27)

Like the distance distribution, if C is a linear code,
the distribution Bi,j based on WU is equal to the weight
distribution B′

i,j based on WU , that is

Bi,j = B′
i,j

(
=

∣∣∣{y ∈ C|y ∈ Wi,j}
∣∣) ,

i = 0, 1, . . . , n1, j = 0, 1, . . . , n2. (28)

Definition 7 (Qi,j(z1, z2; n1, n2)) For any positive in-
tegers n1, n2, a polynomial Qi,j(z1, z2; n1, n2)
(= Qi,j(z1, z2)) is defined by

Qi,j(z1, z2; n1, n2) := Pi(z1; n1)Pj(z2; n2),
i = 0, 1, . . . , n1, j = 0, 1, . . . , n2. (29)

where z1, z2 are indeterminate, and Pi(z1; n1), Pj(z2; n2)
are the Krawtchouk polynomials. If there is no danger
of confusion we omit the n1, n2.

The next Theorem 9, 10, and 11 correspond to The-
orem 2, 3, and 4, respectively.

Theorem 9 If v ∈ Wk,l, then∑
u∈Wi,j

(−1)u·v = Qi,j(k, l). (30)

where i, k ∈ {0, 1, . . . , n1}, j, l ∈ {0, 1, . . . , n2}.
Proof: See Section 5.1.

Theorem 10 For any a1, b1 ∈ {0, 1, . . . , n1}, a2, b2 ∈
{0, 1, . . . , n2},

n1∑
c1=0

n2∑
c2=0

∣∣Wc1,c2

∣∣ Qa1,a2(c1, c2) Qb1,b2(c1, c2)

= 2n
∣∣Wa1,a2

∣∣ δa1,b1δa2,b2 , (31)

where δa1,b1 and δa2,b2 are the Kronecker symbols.

Proof: See Section 5.2.

Theorem 11 For any a1, b1 ∈ {0, 1, . . . , n1}, a2, b2 ∈
{0, 1, . . . , n2},∣∣Wb1,b2

∣∣ Qa1,a2(b1, b2) =
∣∣Wa1,a2

∣∣ Qb1,b2(a1, a2). (32)

Proof: See Section 5.3.
The next Theorem 12 corresponds to Theorem 5.

Theorem 12 Let C(⊆ {0, 1}n) be a linear code, and
C⊥ be the dual code of C. Let Bi,j and B⊥

i,j, i =
0, 1, . . . , n1, j = 0, 1, . . . , n2, be the distribution based
on WU of C and C⊥. Then,

B⊥
i,j =

1
|C|

n1∑
k=0

n2∑
l=0

Bk,lQi,j(k, l),

i = 0, 1, . . . , n1, j = 0, 1, . . . , n2. (33)

Proof: See Section 5.4.
The next Theorem 13 corresponds to Theorem 6.

Theorem 13 Let C(⊆ {0, 1}n) be a code, and Bi,j,
i = 0, 1, . . . , n1, j = 0, 1, . . . , n2 be the distribution
based on WU of C. Then,

1
|C|

n1∑
k=0

n2∑
l=0

Bk,lQi,j(k, l) ≥ 0,

i = 0, 1, . . . , n1, j = 0, 1, . . . , n2. (34)

Proof: See Section 5.5.

361



4.2 LP Bounds for UEP Codes
In what follows, let

∆ := {(i, j) ∈ {0, 1, . . . , n1} × {0, 1, . . . , n2}|
(i 6= 0, i + j ≤ d1 − 1) or

(i + j ≤ d2 − 1)}. (35)

For any (i, j) ∈ ∆, Wi,j ∈ D, if D satisfies Eq. (5).
Definition 8 (MLP (n1, n2; d1, d2)) MLP (n1, n2; d1, d2)
is defined by the solution to the following linear pro-
gramming problem: choose real numbers Bi,j,
i = 0, 1, . . . , n1, j = 0, 1, . . . , n2, so as to

maximize

n1∑
i=0

n2∑
j=0

Bi,j (36)

subject to the constraints

B0,0 = 1, (37)
Bi,j = 0,∀(i, j) ∈ ∆, (38)
Bi,j ≥ 0,

∀(i, j) ∈ {0, 1, . . . , n1} × {0, 1, . . . , n2} \ ∆, (39)
n1∑

k=0

n2∑
l=0

Bk,lQi,j(k, l) ≥ 0,

i = 0, 1, . . . , n1, j = 0, 1, . . . , n2. (40)

The next Theorem 14 corresponds to Theorem 7.
Theorem 14 Any ((n1, n2),M, (d1, d2)) codes satisfy

M ≤ MLP (n1, n2; d1, d2). (41)

Proof: This is obvious from Theorem 13. ¤
The next Theorem 15 corresponds to Theorem 8.

Theorem 15 Let D satisfy Eq. (5). And, we assume
that E (⊆ {0, 1}n) satisfies

D = {e1 ⊕ e2|e1, e2 ∈ E}, (42)∪
(i,j)∈Γ

Wi,j = E,

∃Γ ⊆ {0, 1, . . . , n1} × {0, 1, . . . , n2}. (43)

Then

MLP (n1, n2; d1, d2) ≤
2n

|E|
. (44)

Proof: See Section 5.6.
In the last of this section, we briefly note Theorem

15. Theorem 15 corresponds to Theorem 8 in Section
3. But, different from Theorem 8, assumptions in The-
orem 15, that is Eq. (42), (43), rarely hold completely.
Thus, Theorem 15 is not a pure generalization of Theo-
rem 8. This is because that ((n1, n2),M, (2t1 +1, 2t2 +
1)) UEP codes are a sufficient condition to correct all
errors in E defined by Eq. (6), while (n,M, 2t + 1)
codes are a necessary and sufficient condition to cor-
rect all errors in E, defined by

E = {e ∈ {0, 1}n|wt(e) ≤ t}. (45)

5 Proofs of Theorems
In this section, we prove the theorems in Section 4.

5.1 Proof of Theorem 9
Let v ∈ Wk,l. Then we can write v = (v1,v2) ∈

W
(n1)
k × W

(n2)
l . Therefore,∑

u∈Wi,j

(−1)u·v

=
∑

(u1,u2)∈W
(n1)
i ×W

(n2)
j

(−1)(u1,u2)·(v1,v2) (46)

=
∑

u1∈W
(n1)
i

∑
u2∈W

(n2)
j

(−1)(u1·v1)⊕(u2·v2) (47)

=
∑

u1∈W
(n1)
i

(−1)u1·v1
∑

u2∈W
(n2)
j

(−1)u2·v2 (48)

= Pi(k; n1)Pj(l; n2) (49)
= Qi,j(k, l). (50)

where Eq. (49) is from Theorem 2.

5.2 Proof of Theorem 10
For any a1, b1 ∈ {0, 1, . . . , n1}, a2, b2 ∈ {0, 1, . . . , n2},

n1∑
c1=0

n2∑
c2=0

∣∣Wc1,c2

∣∣ Qa1,a2(c1, c2)Qb1,b2(c1, c2)

=
n1∑

c1=0

n2∑
c2=0

(
n1

c1

)(
n2

c2

)
×Pa1(c1; n1)Pa2(c2; n2)Pb1(c1;n1)Pb2(c2; n2) (51)

= 2n1

(
n1

a1

)
δa1,b1 × 2n2

(
n2

a2

)
δa2,b2 (52)

= 2n
∣∣Wa1,a2

∣∣ δa1,b1δa2,b2 , (53)

where Eq. (52) is from Theorem 3.

5.3 Proof of Theorem 11
For any a1, b1 ∈ {0, 1, . . . , n1}, a2, b2 ∈ {0, 1, . . . , n2},∣∣Wb1,b2

∣∣ Qa1,a2(b1, b2)

=
(

n1

b1

) (
n2

b2

)
Pa1(b1; n1)Pa2(b2;n2) (54)

=
(

n1

a1

) (
n2

a2

)
Pb1(a1; n1)Pb2(a2; n2) (55)

=
∣∣Wa1,a2

∣∣ Qb1,b2(a1, a2), (56)

where Eq. (55) is from Theorem 4.

5.4 Proof of Theorem 12
Before the proof of Theorem 12, we show the next

Lemma 1. In Lemma 1, let f be any mapping defined
on {0, 1}n, and f̂ be the Hadamard transform of f , that
is

f̂(u) =
∑

v∈{0,1}n

(−1)u·vf(v), u ∈ {0, 1}n. (57)
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Lemma 1 [6, Ch.5 Lemma 2] Let C be a linear code,
and C⊥ be the dual code of C. Then∑

u∈C⊥

f(u) =
1
|C|

∑
u∈C

f̂(u). (58)

Proof of Theorem 12: Let the mapping fWi,j be

fWi,j (u) =
{

0, u 6∈ Wi,j ,
1, u ∈ Wi,j .

i = 0, 1, . . . n1, j = 0, 1, . . . n2, (59)

If Eq. (59) is used as the mapping f in Eq. (58), the
left-hand side of Eq. (58) is∑

u∈C⊥

fWi,j (u) = B⊥
i,j , (60)

because C⊥ is a linear code.
And, the right-hand side of Eq. (58) is

1
|C|

∑
u∈C

f̂Wi,j (u)

=
1
|C|

∑
u∈C

∑
v∈{0,1}n

(−1)u·vf(v) (61)

=
1
|C|

∑
u∈C

∑
v∈Wi,j

(−1)u·v (62)

=
1
|C|

n1∑
k=0

n2∑
l=0

∑
u∈C∩Wk,l

∑
v∈Wi,j

(−1)u·v (63)

=
1
|C|

n1∑
k=0

n2∑
l=0

Bk,lQi,j(k, l), (64)

where Eq. (64) is from Theorem 9. Thus we can get
Eq. (33). ¤
5.5 Proof of Theorem 13

For i = 0, 1, . . . , n1, j = 0, 1, . . . , n2,

1
|C|

n1∑
k=0

n2∑
l=0

Bk,lQi,j(k, l)

=
1

|C|2
n1∑

k=0

n2∑
l=0

∑
(x, y) ∈ C2,
x ⊕ y ∈ Wk,l

Qi,j(k, l) (65)

=
1

|C|2
n1∑

k=0

n2∑
l=0

∑
(x, y) ∈ C2,
x ⊕ y ∈ Wk,l

∑
u∈Wi,j

(−1)u·(x⊕y) (66)

=
1

|C|2
∑
x∈C

∑
y∈C

∑
u∈Wi,j

(−1)u·x(−1)u·y (67)

=
∑

u∈Wi,j

(
1
|C|

∑
x∈C

(−1)u·x

)2

(68)

≥ 0, (69)

where Eq. (66) is from Theorem 9.

5.6 Proof of Theorem 15
Before the proof of Theorem 15, we show some lem-

mas and definitions.
Lemma 2 If i + j < k, then

n∑
l=0

(
n
l

)
Pi(l)Pj(l)Pk(l) = 0. (70)

Proof: The left-hand side of Eq. (70) is the coeffi-
cient of xiyjzk in

n∑
l=0

(
n
l

)
(1 + x)n−l(1 − x)l

(1 + y)n−l(1 − y)l(1 + z)n−l(1 − z)l(71)

=
n∑

l=0

(
n
l

)
{(1 + x)(1 + y)(1 + z)}n−l

{(1 − x)(1 − y)(1 − z)}l (72)
= {(1 + x)(1 + y)(1 + z) +

(1 − x)(1 − y)(1 − z)}n (73)
= 2n(1 + xy + yz + za)n, (74)

where Eq. (73) is from binomial theorem. If i + j < k,
the coefficient of xiyjzk in Eq. (74) is 0. Thus we get
Eq. (70). ¤

Next, we show the dual problem to the linear pro-
gramming problem defined in Definition 8.

Problem 1 Choose real numbers βi,j, i = 0, 1, . . . , n1,
j = 0, 1, . . . , n2, so as to

minimize

n1∑
i=0

n2∑
j=0

(
n1

i

) (
n2

j

)
βi,j (75)

subject to the constraints

β0,0 = 1, (76)
βi,j ≥ 0, i = 0, 1, . . . , n1, j = 0, 1, . . . , n2, (77)
n1∑
i=0

n2∑
j=0

βi,jQi,j(k, l) ≤ 0,

∀(k, l) ∈ {0, 1, . . . , n1} × {0, 1, . . . , n2} \ ∆.(78)

From the duality theorem of linear programming
[6, Ch.17 Theorem 15, 16], it follows that any feasible
solution to the dual problem gives an upper bound on
the optimal solution to the primal problem.

Proof of Theorem 15: In Problem 1, let

βi,j =

{∑
(p,q)∈Γ Qp,q(i, j)

|E|

}2

. (79)

Then

β0,0 = 1, (80)
βi,j ≥ 0, i = 0, 1, . . . , n1, j = 0, 1, . . . , n2. (81)
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And, for any (k, l) ∈ {0, 1, . . . , n1} × {0, 1, . . . , n2} \∆,

n1∑
i=0

n2∑
j=0

βi,jQi,j(k, l)

=
n1∑
i=0

n2∑
j=0

{∑
(p,q)∈Γ Qp,q(i, j)

|E|

}2

Qi,j(k, l) (82)

=
1

|E|2
n1∑
i=0

n2∑
j=0

∑
(p,q)∈Γ

∑
(r,s)∈Γ

×Qp,q(i, j)Qr,s(i, j)Qi,j(k, l) (83)

=
1

|E|2 · |Wk,l|
∑

(p,q)∈Γ

∑
(r,s)∈Γ

n1∑
i=0

n2∑
j=0

∣∣Wi,j

∣∣
×Qp,q(i, j)Qr,s(i, j)Qk,l(i, j) (84)

=
1

|E|2 · |Wk,l|
∑

(p,q)∈Γ

∑
(r,s)∈Γ

n1∑
i=0

n2∑
j=0

∣∣Wi,j

∣∣
×Pp(i; n1)Pq(j; n2)Pr(i; n1)Ps(j; n2)
×Pk(i; n1)Pl(j; n2) (85)

=
1

|E|2 · |Wk,l|
∑

(p,q)∈Γ

∑
(r,s)∈Γ

×

{
n1∑
i=0

∣∣W (n1)
i

∣∣Pp(i; n1)Pr(i; n1)Pk(i; n1)

}

×


n2∑

j=0

∣∣W (n2)
j

∣∣Pq(j; n2)Ps(j; n2)Pl(j; n2)

(86)

= 0. (87)

where Eq. (84) is from Theorem 11, and Eq. (87) is
from Lemma 2.

Thus, the following is a feasible solution to Problem
1.

n1∑
i=0

n2∑
j=0

(
n1

i

)(
n2

j

) {∑
(p,q)∈Γ Qp,q(i, j)

|E|

}2

=
1

|E|2
n1∑
i=0

n2∑
j=0

(
n1

i

)(
n2

j

)
∑

(p,q)∈Γ

∑
(r,s)∈Γ

Qp,q(i, j)Qr,s(i, j) (88)

=
1

|E|2
∑

(p,q)∈Γ

∑
(r,s)∈Γ

2n

(
n1

p

) (
n2

q

)
δp,rδq,s(89)

=
2n

|E|2
∑

(p,q)∈Γ

|Wp,q| (90)

=
2n

|E|
, (91)

where Eq. (89) is from Theorem 10. We can get Eq.
(44), because any feasible solution to the dual problem
is upper bound on the optimal solution to the primal
problem. ¤

6 Conclusion
In this paper, we proposed the LP bound for UEP

codes. Firstly, we generalized the distance distribution,
to the distribution based on WU . Under the general-
ization, we led to some theorems and the LP bound for
UEP codes. Lastly, we compared the proposed bound
with the modified Hamming bound.

In future work, we will actually calculate bounds
for UEP codes in some parameters by solving the LP
problems. And, we will compare these bounds with
codes found by certain methods.

Acknowledgment
The authors would like to thank all members of

Matsushima Lab. in Waseda Univ. for their helpful
suggestions to this work. This research was partially
supported by Grant-in-Aid for Scientific Research on
Innovative Areas of Japan Society for the Promotion
of Science (No:20200044), Waseda University Grant for
Special Research Project No:2009A-058.

References
[1] P.Delsarte, “An algebraic approach to the associa-

tion schemes of coding theory, ” Philips Res. Repts.
Suppl. , No.10, 1973.

[2] L. A. Dunning and W. E. Robbins, “Optimal encod-
ings of linear block codes for unequal error protec-
tion, ” Inform. Contr. , vol. 37, pp.150-177, 1978.

[3] W. J. van Gils, “Two topics on linear unequal error
protection codes: bounds on their length and cyclic
code classes,” IEEE Trans. Inform. Theory, vol. IT-
29, pp. 866-876, Sept. 1983.

[4] A. S. Hedayat, N. J. A. Sloane and J. Stufken,
Orthogonal Arrays: Theory and Applications,
Springer, New York, 1999.

[5] S. Hirasawa and T. Nishijima, Introduction to cod-
ing theory (in Japanese), Baifukan, 1999.

[6] F. J. MacWilliams and N. J. A. Sloane, The the-
ory of Error-Correcting Codes, Amsterdam: North-
Holland Publishing Co., 1977.

[7] B. Masnick and J. Wolf, “On linear unequal er-
ror protection codes,” IEEE Trans. Inform. The-
ory, vol. IT-3, pp. 600-607, Oct. 1967.

[8] T. Saito, T. Matsushima and S. Hirasawa, “A
Note on Construction of Orthogonal Arrays with
Unequal Strength from Error-Correcting Codes,”
IEICE Trans. Fundamentals, Vol.E89-A, pp.1307-
1315, May 2006.

[9] Y. Ukita, T. Matsushima and S. Hirasawa, “A Note
on Learning Boolean Functions Using Orthogonal
Designs” (in Japanese), IEICE Trans. Fundamen-
tals, Vol.J86-A, no.4, pp.482-490, Apr. 2003.

364




