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Abstrace—Orthogonal Arrays (OAs) are essential in experi-
mental designs. In this paper, we extend OAs to be more suitable
for experimental designs. These are OAs with partial strength.
These extended OAs were often considered in applications to
experimental designs. Then we propose Linear Programming
(LP) bounds for the extended (As, and show some numerical
examples of these LP bounds.

1. INTRODUCTION

Experimental designs in statistics are techniques to get
much information from a few experiments [6]. [n experimental
designs, it is important to construct Orthogonal Arrays (OAs).

OAs are determined by the four parameters; the number of
rows M{€ ZT), the number of columns n{€ Z*}, the number
of levels ¢ (g is a prime power) and the strength {{€ Z). OAs
with the above parameters are described by OA(M,n, gq,t). In
this paper, we focus on the case ¢ = 2, that is OA{M,n,2,t).
Then construction problems for OQAs are formulated to find
0As with the minimum A, given » and £. With the problems,
it is also important to find lower bounds of M, given n and £.

On the other hand, there are many researches on error-
correcting codes [3]. In error-correcting codes, one of the most
basic problems is to construct {n, M, d) codes, where n is the
code length, M is the number of codewords and d is the min-
imum distance. Construction problems for binary (n, M, d)
" codes are formulated to find codes with the maximum M,
given 1 and d, and it is also important to find upper bounds
of M, given n and d.

In previous work, some relations between OAs and error-
correcting codes were clarified [2],[4],[5],[7],[8]. For example,
an QA(M,n,2,t) can be made from a binary linear (n, M, d)
code with the dual distance ¢ + 1, where the dual distance
means the minimum distance of the dual code. So both results
of OAs and error-correcting codes influenced each other.

Delsarte proposed Linear Programming (LP) bounds for
0As and error-correcting codes [1]. Using the LP bounds, a
lower bound of M in OA(M,n,2,t) and an upper bound of
M in (n, M, d) codes can be calculated. It was shown that the
LP bounds were good bounds from numerical examples.

in the LP bounds, the weight distributions of codes {or
OAs) are important parameters. Moreover, two theorems about
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the weight distribution play important roles. The first is
called Macwilliams Theorem. This theorem shows the relation
between the weight distribytions of dual codes and primary
codes. The second is called Delsarte Theorem. This theorem
shows the strong constraints of the weight distributions.

In this paper, we extend OA(M,n, 2,t) to OAs with partial
strength, OA(M,n,2,5), S € {0,1}*, and we propose LP
bounds for QA(M,n,2,5). An OA(M,n,2,5) is equal to
an QA(M,n,2,t) if § = {s C {0,1}"*|wi{s) < t}, where
wit{s) is the Hamming weight of s. The extended OAs are
more suitable for models of experimental designs, which have
complicated interaction effects of factors in a experiment.
Therefore, these OAs were often considered in applications
to experimental designs.

We firstly define OA(M,n,2,S) and extend the weight
distribution to be suitable for OQA(M, n, 2, S). Then, we show
two theorems about the extended weight distribution, which
correspond to Macwilliams Theorem and Delsarte Theorem.
And, we lead to LP bounds of OA(M,n,2,5) using the two
theorems. Lastly, we show some numerical examples of the
LP bounds.
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