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Abstract

In our previous studies, we have discussed on block concatenated codes from random coding argu-
ments. Block codes constructed by trellis codes are used for inner codes to reduce the decoding complex-
ity of the over-all concatenated codes. In this paper, we focused upon only the block codes constructed
by the trellis codes. Error exponents and decoding complexity for terminated trellis codes and general-
ized tail biting (GTB) random trellis codes, and their relationships are derived, where the GTB trellis
codes consist of full tail biting (FTB) trellis codes, partial tail biting (PTB) trellis codes and direct trun-
cated (DT) trellis codes. We show that the PTB trellis codes at all rates except for low rates are superior
among the GTB trellis codes, in a sense that they have smaller upper bound on the probability of decoding

error for given decoding complexity.

Keywords: Trellis codes, Error exponent, Decoding complexity, Terminated trellis codes, Generalized tail
biting trellis codes

Introduction

In this decade, we have studied on trellis codes [11] for reducing the decoding com-
plexity of the concatenated codes [5], [ 6], [ 7]. The block concatenated codes
[ 2 ] and their generalized version [ 8 ] with trellis inner codes have been discussed
from random coding arguments. The trellis codes are effectively used as the inner
codes so that we can obtain larger exponents of the concatenated codes without in-
creasing the over-all decoding complexity.

In this paper, we focused upon only the block codes constructed by the trellis
codes. Error exponents and decoding complexity for terminated trellis codes and

generalized tail biting (GTB) trellis codes are discussed. The terminated trellis
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codes [ 3] are simple deriving methods for the block codes with respectable expense
in rates. While the GTB trellis codes [ 9 ] are known to be one of the most powerful
codes for converting trellis codes into the block codes with no loss in rates. The GTB
trellis codes consist of full tail biting (FTB) trellis codes, partial tail biting (PTB)
trellis codes and direct truncated (DT) trellis codes. Since the FTB trellis codes re-
quire an intolerable increase in decoding complexity, much efforts have been de-
voted to the studies on suboptimum decoding algorithms for the FTB trellis codes
[1], [9] or efficient maximum likelihood decoding algorithms for the GTB trellis
codes [12]. Unfortunately, however, the decoding complexity of the latter algo-
rithms in worst cases is the same as that of the complete maximum likelihood decod-
ing algorithm, although it is asymptotically the same as that of the Viterbi
algorithm when the signal to noise ratio becomes large.

On the other hand, we assume the using of complete maximum likelihood decod-
ing of the GTB trellis codes, since we are interested in random coding arguments.
The g-ary GTB trellis code can be constructed as follows [ 9 ] : Let the encoder be ini-
tialized by the last part v'(< v) symbols of the information symbols of length u,
where v is the constraint length of the trellis code, and ignore the output of the en-
coder corresponding to vinformation symbols. Next input all # information symbols
into the encoder yielding b channel symbols per information symbol, and output the
codeword of length N = ub, where rate r is defined by » = % In g. We then have a
(ub, u) block code over GF (g). Note that the case of v = v gives the FTB trellis
code, and that of v" = 0, the DT trellis code. We have analyzed error exponents and
the decoding complexity for the FTB random trellis code. There is a possibility such
that the probability of decoding error for the GTB trellis codes is smaller than that
of ordinary block codes with the same decoding complexity, even if complete maxi-
mum likelihood decoding of the GTB trellis codes is performed.

First, we briefly review results obtained for the ordinary block codes and the
terminated trellis codes. Second, we derive the error exponents and the decoding
complexity for the GTB trellis codes. We show that the PTB trellis codes at all rates
except for low rates are superior among the GTB trellis codes, in a sense that they
have smaller upper bound on the probability of decoding error for given decoding
complexity. Next, the DT trellis codes are compared with the terminated trellis
codes. Finally, we compare the performance of the terminated trellis codes and the
GTB trellis codes (which consist of the FTB, the PTB, and the DT trellis codes).

Throughout this paper, assuming a discrete memoryless channel with capacity C,
we discuss the lower bound on the reliability function (usually called the error expo-

nent) and asymptotic decoding complexity measured by the computational work [10].
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In Section 2, we briefly review the performance of the ordinary block codes and
the terminated trellis codes. In Section 3, the error exponents and the decoding com-
plexity for the GTB trellis codes are derived. The term 0(1)s are disregarded, since
we are interested in an asymptotic behavior. Section 4 describes conclusions and

further works.

2 Preliminaries
2.1 Block codes

Let an (N, K) block code over GF (g) be a code of length N, number of information

symbols K and rate R, where

R = %ln g (K < N). [nats/symbol] (1)

From random coding arguments for an ordinary block code, we have the following
lemma.
Lemma 1 (Ordinary block codes [ 4]) There exists a block code of length N and
rate R for which the probability of decoding error Pr(&) and the decoding complex-
ity G satisfy

Pr(&) <exp[—NE(R)] (0<R<O), (2)
and

G ~ exp[NR], (3)

where E(-) is (the lower bound on) the block code exponent [ 3], and the symbol

¢

‘~" indicates asymptotic equality". L]

Table 1 Asymptotic results on error exponents and decoding complexity for block codes

Block code Error exponent | Decoding complexity G | Upper bound on Pr(-)
. )
Ordinary block code (Lemma 1) E(R) exp[NR] G’%
Terminated trellis code (Lemma 2) E(R)[3] q’ G*If,g%

GTB trellis code (Theorems 1 and 2)

DT trellis code (8" = 0) E(r)[3] q" c T

, eq(r)
PTB trellis code (0 < 6" < 6) ec(r) P G
FTB trellis code (6’ = 0) eq(r) 7 oo

2.2 Trellis codes

Let a (w, v, b) trellis code over GF (g) be a code of branch length «, branch
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constraint length v, yielding b channel symbols per branch and rate » which satisfies
1
r= Ing. [nats/symbol] (4)

v .
Hereafter, we denote w by a parameter 0, i.e.,

9:% 0<0<1). (5)
Letting
N = ub, (6)
and
_ (u=wr

R =(1-0)7, (7)

we have the following lemma:
Lemma 2 (Terminated trellis codes [ 3]) There exists a block code of length N and
rate R obtained by a (u, v, b) terminated random trellis code for which the equations
(2) and (8) are satisfied, where N and R are given by (6) and (7), respectively.
G~q' (8)
[]
For ordinary block code and for terminated trellis codes, results derived are shown
in Table 1 (See Appendix A).
Note that the following equation holds between E(R) and e(r), where e(+) is

(the lower bound on) the trellis code exponent [ 3]:

E(R) = nggl(l—ﬂ)e<§>, (9)

which is called the concatenation construction [ 3 J.
3 Generalized tail biting trellis codes

The GTB trellis code is introduced as a powerful converting method for maintaining
a larger error exponent with no loss in rates, although the decoding complexity in-
creases. The GTB trellis codes can be constructed as follows [ 9]: Suppose an en-
coder of a (u, v, b) trellis code. First, initialize the encoder by inputting the last v’
information (branch) symbols of » information (branch) symbols, and ignore the
output of the encoder. Next, input all # information symbols into the encoder, and
output the codeword of length N = ub in channel symbols. As the result, we have
a (ub, u) block cosie of rater = % In g over GF (g) by the tail biting method. Here-
after we denote Z by a parameter bu 6’ ie.,
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9”:% 0<6<0<1. (10)

The GTB trellis codes are composed of :

(i) Direct truncated (DT) trellis codes for v" = 0 (8" = 0) ;

(ii) Partial tail biting (PTB) trellis codes for 0 < »" < » (0 < 8" < 0 < 1);and
(iii) Full tail biting (FTB) trellis codes v’ = v (8"’ =60 < 1).

3.1 Exponential error bounds for GTB trellis codes

Theorem 1 There exists a block code of length N and rate » obtained by a GTB ran-
dom trellis code with 0 < 8" < 8 < 1 for which the probability of decoding error
Pr(&) satisfies

Pr(&) <expl—Ne,(r)] (0 <r<O), (11)
where

ec(r) = min{Oe(r), E[(1—0)7r], E(O'r)}
<0 <0<1). (12)

Proof: Let w be a message sequence of (branch) length u, where all messages are

generated with the equal probability. Rewrite the sequence w as
w=(w,,w,), (13)

where w, , is the former part of w (length «—v), and w, = (w,, w, ) the latter
part of w (length v). First initialize the encoder by inputting (w,, 0° "), where 0"
is all 0 sequence of length m. Next input w into the encoder. Then output the coded
sequence x of length® N = ub. Suppose the q”/ Viterbi trellis diagrams, each of which
starts at the state s;(i = 1, 2, -+, q”/) depending on w,, and ends at the state s; = &,
where the number of the states s, ie, |S;], is ¢ "[9] (See Figure 1). The Viterbi
decoder generates the maximum likelihood path w'” in the trellis diagram for start-
@

ing at s; and ending at s, & $,. Computing max; w *~ = w, the decoder outputs .

Starting states Ending states Starting states Ending states
s, = (0, 0), S, = {00, 0} s, = (0, 0), S, = 10, 0), (0, D}
s, = (0, 1), S, = {00, D}
s; = (1,0, Sy = {1, 0} s; = (1,0, S, = {(1,0), (1, D}
s, = (1, 1), S, =11, D}
(a) FTB trellis code for v = v" = 2 (b) PTB trellis code for v = 2 and v" = 1

Figure 1 Examples of FTB and PTB trellis codes
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The decoding error occurs when {w # w}. Without loss of generality, let the true
path be w = 0" which starts at s, (and ends at s;). We then have three types of de-
coding error, ie., £, &,, and &, (See Figure 2).

The probability of decoding error Pr(&,) within the trellis diagram starting at

s, (and ending at s,) for a (u, v, b) random trellis code is given by [ 3]

Pr(&,) < K\Nexpl—vbE,(p)] (0 <p<1)
= exp{—NO[le(r)—o(1)]}, (14)

. . In KN
where an error event begins at any time and o(1) = nNé — (0 as N — oo,

The probability of decoding error Pr(&,) within the trellis diagram starting at
s, and ending at s; € S, (j # 1) is given by [ 3]

Pr(&,) < g exp{—vbE,(p)}
= exp{—NI[E,(0)—p(1—0)r]}
=exp{—NE[(1—-6")r]}, (15)

since the number of the possible adversaries is q”*“/— 1.
While the probability of decoding error Pr(&,) within trellis diagrams starting
ats, (i # 1,71 = 2,3, -, ¢") and ending at s; € S, is also given by

Pr(&,) < q”/” exp{—vbE,(0)}
= exp{—NLE,(p) —p0'r]}
= exp{—NEL(67]}, (16)
since the number of the possible adversaries is q”/— 1.

From (14), (15) and (16), the probability of over-all decoding error Pr(&) is
bounded by the union bound:

Pr(&) < Pr(&)+ Pr(&,) + Pr(&y)

= exp{—Nle;(r)—o(1)]}, (17)
In K,
where e, (r) is given by (12) and o(1) = nNéN —i—lnTB — () as N — co. Disregard of
the term o(1) in (17) gives (12). L]

Note that in the proof of Theorem 1, not only the trellis code construction but
the block code construction appear as shown in Figure 2.

In our previous paper [ 5], we have discussed the FTB trellis codes, where we
restricted ourselves to be 0 < 0 < % since larger error exponents which are domi-
nated by e(+) are obtained and the 2 decoding complexity for the block concate-
nated code with the FTB trellis inner codes is remained to that of the original

concatenated codes.
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true path
& s
&, true path

s, ] N

S
€ S\s,
Sy

&, tjrue path
N
: 5 E S
Sy
q”/—l { i 1 $; & &
S !
. : ¢ 5 ESy

Figure 2 Three types of error events

Collorary 1 (FTB trellis codes [ 5]) The probability of decoding error Pr(&) for

the FTB trellis codes with 0 < 8 < % satisfies

Pr(&) < expl—NOe(r)] (0 <r<C), (18)
and the decoding complexity G for the FTB trellis codes is given by

G ~ ¢* = exp[2N6r]. (19)

(]
Comparison between the DT trellis codes and terminated trellis codes leads the

following corollary.

Collorary 2 The DT trellis codes have a smaller upper bound on the probability of
decoding error than both the terminated trellis codes and the ordinary block codes
at the same decoding complexity.

Proof: See Appendix B. L]

Example1 On a very noisy channel’, the exponents for the GTB trellis codes are de-

picted in Figure 3(a ), (b) and Figure 4. We see that:

(a) The largest exponent is obtained at 6" = 0.5 for %< 6 <1, since

E[(1—6")r] = E(0'r) holds, hence the PTB trellis codes are the best
among GTB trellis codes from the view-point of error exponents.

(b) While the largest exponent is obtained at @ = 6’ for 0 < 9 < % hence the
FTB trellis codes are the best among the GTB trellis codes.
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eq(r) = min{Ge(r), E[(1—0)7r], E(0'r)}

06 [( 7] 06 E[(1—6")7]
E[(1—0)r E[(1-6)r
0.5 \( 0e(r) 0.5 o /ee(r)
o 04 - O 04 -
> \ > \ ‘""&,__/E(Q 7)
~ 03 s 03 K
% 0s N B g, A
0.1 4 0.1
eq(r)
0 0
0 02 04 06 08 1 0 02 04 06 08 1
r/C r/C
(a) PTB Trelliscodes, (1) 6=108, 8°=05 (2) 0=08 0 =03

eo(7) = min{Oe(r), E[(1—0)r], E(0'r)}
0.5 0.6

. JE[(1—0")7] E[(1—6)7]
0.4 \“< : )7 05 m=of ( "
N ".‘ S~ 99(7’)
“ Oe(r) TS
Q N / Q 0.4 - >* ,
~ 03 i X N e B0
S, [ 7 N EWD & 03
< 02 y < 8 .
® d S 0.2 . -
eq(r) - N
0.1 = 0.1 i ~
' eq(r) _
O L 1 L n 0 n L L 1
0 02 04 06 08 1 0 02 04 06 08 1
r/C r/C
(b) FTB Trellis codes, (1) 0 =05, 8 =05 (2) 6=03 6 =03

Figure 3 Example of construction of error exponents for GTB trellis
codes over a very noisy channel

€G<’}’)/C TN ) =04
0.5 N 6’/ = 0.3
04 Tl N eeseesesseesessssssesnnes 6/ — 02
0.3 T 6 =00
027 — .
0.1 =L 31
00

1105
0.6 4
ol 8T 0

Figure 4 Exponents g;(r) of G for a very noisy channel.

3.2 Decoding complexity for GTB trellis codes

The maximum likelihood decoder for the Viterbi algorithm requires u’g" "' compari-
sons (See derivavtions in [ 5] Appendix A) for each trellis diagram and performs
them in parallel for q”/ trellis diagrams for the GTB trellis codes. We then have Theo-
rem 2, where u’q" "' = u’qq""" = exp (INr[0+ 0 +0(1)]} (0(1) = 2lnuting

vbr
0asv—c0) and ¢ = explbr] are used.
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Theorem 2 The decoding complexity G of the GTB trellis code is given by

G ~ q“”/ =exp[N(O+0)r] (0<60" <0<1).

The results derived in Theorem 1 and Theorem 2 are also shown in Table 1.

(20)

]

3.3 Upper bound on probability of decoding error for same decoding complexity

Next, we evaluate the probability of decoding error Pr(&) by taking into account

the decoding complexity G so that coding methods can be clearly compared [ 3 J.

Let us assume that the code length NV and rate R = r are the same for all conversion

methods. To rewrite Pr(&) in terms of G for the ordinary block codes, we have

G ~ exp[NR] from (3), ie.,

N ~ % In G.
We then have [ 3]
E(R)
Pr(&) <G & .

Since (20) holds for the GTB trellis code, we have the following corollary.

Collorary 3 For the GTB trellis code, we have
Pr(&) < G %7,
where

min{0e(r), E[(1—0)7], E(6'r)},

1
9 = o107y

2D

(22)

(23)

(24)

and the term g.(7) in an exponent part of G is taken to be minimum for 0 < 6" <

6 <1.
Proof: See Appendix C.

]

A similar derivation gives the evaluations for the DT trellis code and for termi-

nated trellis code as shown in Table 1, where ¢ = exp[vbr] = exp[NOr] holds (See

Appendix A).

Example 2 On a very noisy channel, the exponents g,(7) of G in (24) for the GTB

trellis code are shown in Figure 5. We see that:

(a) For L < 0 < 1,9.(r) is the largest at " = 0.5, hence the PTB trellis codes

2

are the best among the GTB trellis codes at all rates except for low rates.
The DT and the FTB trellis codes have smaller values of g.(7) than the

PTB trellis codes.
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ec(n/C A o' =04

. SR R AN 0 =03
08 N R N —— - 02
06 S - 00
0.4
0.2
001 02 03 04 e
r/25 W6oT g gy ¢

Figure 5 Error exponents e;(r) of GTB trellis codes for a very noisy channel.

(b) Whilefor0 <0< % g.(7r) is the largest at 6 = 6’, hence the FTB trellis
codes are the best among the GBT codes, and the DT trellis codes have

smaller values of g,(r) than the FTB trellis codes.
4 Concluding remarks

We have derived the error exponents and the decoding complexity for block codes
converted from the trellis codes. We have shown that the PTB trellis codes at all
rates except for low rates are superior among the GTB trellis codes, in a sense that
they have the smallest upper bound on the probability of decoding error for given
decoding complexity. This result suggests us that we can attain high performance
by the PTB trellis codes with a careful choice of the parameter 8’ for given 6. Detail
discussions [ 7 ] are omitted here, it has been also clarified that the DT trellis inner
codes are effective among the GTB trellis codes for constructing the generalized ver-
sion of concatenated codes, Codes C"’; to keep the same decoding complexity as the
original concatenated codes. If we can allow increasing the decoding complexity,
larger exponents are obtained by Codes C"Y with the GTB trellis inner codes. We
also show that larger error exponents are obtained by the generalized version of con-
catenated codes, if the decoding complexity is allowed to be larger than that of the
original concatenated code, although it is still in polynomial order.

A detailed analysis on upper bounds on the probability of decoding error for the
GTB trellis codes with different parameters 6 and 6" at the same decoding complex-
ity will be in further investigation. Although the random coding arguments suggest
some useful aspects to construct the code, we should note to make them applicable

to a practical code, which is also a future work.
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Notes

1 Strictly speaking, G ~ N?exp[NR] holds, since likelihood comparisons between two
codewords require NN logical operations and N shift operations, and the maximum number of
comparisons of codewords is exp[NR]. We have used N?exp[NR] = exp NR[1+o0(1)],

o(l) = Z%RN — (0 as N — oo, where the term o(1) is ignored in (3).

Terms in an exponent part of G are taken to be minimum for given 0 < 8" < 6 < 1.

3 Note that GTB random trellis coding requires every channel symbol on every branch be cho-
sen independently at random with the probability p which maximizes E,(o, p) on nonpatho-
logical channels [ 3 ].

4 On a very noisy channel, the upper bound and the lower bound to the error exponent are
approximately the same for all rates, hence it is called the true error exponent. The error ex-
ponents of orthogonal codes over the unlimited bandwidth white Gaussian channel coincide

with those of codes over a very noisy channel [ 2 ].
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Appendix A: Derivations of error exponents and decoding complexity for a termi-

nated trellis code in Table 1.

For a terminated trellis code, we have

Pr(&) < (u—v)K,exp{—vble(r)—0o(1)]}
< NK, exp{—N0O[e(r)—0o(1)]}
<exp{—N[E(R)—0o (1]}, (25)

where
E(R) = O{E%IEEO(p)—pR] (R=(1-0)r), (26)

and K, is a constant independent of u, and E,(p) is the Gallger’s function. Substitut-
ing 6 =1—x in (9) and disregarding o’ (1) in (25), we have an error exponent
E(R). Obviously, the decoder requires ¢ comparisons at each node for each step,
where the number of nodes is ¢", and repeats them u steps. Since these operations

2 v+l

are carried out by u logic units, we have uq" "~ computational work as the decoding

complexity in total. We have used u’q""' = u’q explvbr] = exp{vbr[1+o0(1)]},
o'(1) = 2Inu+1Ing

by — 0, as v — o, where the term 0'(1) is ignored in Table 1.

Appendix B: Proof of Corollary 2

From Table 1, we see that

E(R)  (UA-0OER) _ E) < 1 >
< < < —
R 6R - or O<9_2 ’ (21
and
(1-0)E(R) _ ER) _ E(r) < 1 >
< < — <
6R - R Or 2<9_1’ (28)
completing the proof.
Appendix C: Proof of Corollary 3
Substitution of (20) into (11) gives
Pr(&) < expl[—Ne.(r)]
Neg (r)
= G N@O+oHr, (29)

after a little manipulation.
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