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Almost Sure and Mean Convergence of Extended

Stochastic Complexity

Masayuki GOTOH†, Toshiyasu MATSUSHIMA†, and Shigeichi HIRASAWA†, Members

SUMMARY We analyze the extended stochastic complex-
ity (ESC) which has been proposed by K. Yamanishi. The ESC
can be applied to learning algorithms for on-line prediction and
batch-learning settings. Yamanishi derived the upper bound of
ESC satisfying uniformly for all data sequences and that of the
asymptotic expectation of ESC. However, Yamanishi concen-
trates mainly on the worst case performance and the lower bound
has not been derived. In this paper, we show some interesting
properties of ESC which are similar to Bayesian statistics: the
Bayes rule and the asymptotic normality. We then derive the
asymptotic formula of ESC in the meaning of almost sure and
mean convergence within an error of o(1) using these properties.
key words: extended stochastic complexity, stochastic complex-
ity, Bayesian statistics, asymptotic normality

1. Introduction

J. Rissanen proposed the notion of stochastic complex-
ity (SC) [14] which is a criterion to measure the amount
of information in a given data sequence and is based on
the concept of minimum description length [11]. This is
defined by the minimum average codelength for a prior
density on the parameter space when the parametric
model class is given. It is known that SC is equivalent
to the codelength of the mixture code on the param-
eter space and its loss is measured by the logarithmic
function.

Recently, K. Yamanishi has proposed the extended
stochastic complexity (ESC) which is a generalized ver-
sion of SC and demonstrated its effectiveness in learn-
ing algorithms for on-line prediction and batch-learning
settings [19]. Yamanishi concentrates mainly on the ag-
gregating algorithm and the wost case performance. In
[19], he derived the upper bound of ESC satisfying uni-
formly for all data sequences and that of the asymp-
totic expectation of ESC. However, the asymptotic for-
mula of ESC satisfying uniformly for all data sequences
within an error of order o(1) have not been derived.
And, Yamanishi has not derived the tight lower bound
of ESC. This study is led and encouraged by the exis-
tance of this problem which was pointed out in [20] as
a future research work.

In this paper, we show an interesting property in
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ESC like Bayesian statistics: the Bayes rule and the
asymptotic normality. Using this property, we derive
the asymptotic formulas of ESC within an error of o(1)
in the meaning of almost sure and mean convergence.
Although K. Yamanishi discussed the upper bound of
ESC which holds uniformly for all individual sequences,
we discuss the almost sure convergence of ESC. From
the discussion of almost sure convergence, we can de-
rive the asymptotic formula of ESC within an error
of o(1). Assuming that the deta sequence is emitted
from a source with the true probability distribution,
the asymptotic formula which holds almost surely is an
evaluation of ESC. Moreover, we derive the asymptotic
expectation of ESC within an error of o(1). From this
result, we can show that Yamanishi’s upper bound of
asymptotic expectation of ESC is tight within an error
of o(1).

2. Preliminaries

2.1 Stochastic Complexity

We denote random variables on X , Y, and Z by X ,
Y , and Z, where Z = (X,Y ). Zn = (X,Y )n is a
random variable on Zn = Z × Z × · · · × Z︸ ︷︷ ︸

n

. Let zn =

z1z2 · · · zn ∈ Zn be an independently and identically
distributed (i.i.d.) data sequence with length n from
a source with the true probability distribution p∗(zn)
= p∗(Zn = zn) =

∏n
i=1 p

∗(Zi = zi), where zi = (xi, yi),
xi ∈ X , yi ∈ Y, and zi ∈ Z, i = 1, 2, · · · , n. A class of
probability models is given by Pk = {pθk(Y |X) : θk ∈
Θk}, where θk is a k-dimensional parameter and Θk

is a subset of the k-dimensional Euclidean space Rk.
pθk(Y |X) is a probability mass or probability density
of Y conditioned by X . Let π(θk) be a prior density on
Θk.

Although several classes of SC have been proposed,
we consider the following formula [13].

SC(yn|xn) = − log q(yn|xn), (1)

q(yn|xn) =
∫
pθk(yn|xn)π(θk)dθk. (2)

We can regard − log q(yn|xn) as an ideal codelength of
yn conditioned by xn. Here, we have
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− log q(yn|xn) = −
n∑

t=1

log q(yt|xt, z
t−1), (3)

q(yt|xt, z
t−1) =

∫
pθk(yt|xt)π(θk|zt−1)dθk, (4)

where π(θk|zt−1) is the Bayes posterior density of θk

which is given by

π(θk|zt−1) =

t−1∏
i=1

pθk(yi|xi)π(θk)

∫ t−1∏
i=1

pθk(yi|xi)π(θk)dθk

. (5)

Therefore, the cumulative codelength of the predictive
code is equivalent to that of the non-predictive code.

2.2 Extended Stochastic Complexity

At first, we define a hypothesis class H, which may be
a set of functions fθk(X) : X → Y written as H =
{fθk(X) : θk ∈ Θk} or a set of conditional probability
distributions pθk(Y |X) written as H = {pθk(Y |X) :
θk ∈ Θk}. Here θk is a k-dimensional parameter and
Θk is a subset of the k-dimensional Euclidean space Rk.

Let L: Z × H → [0,+∞) be a loss function and
L(Y,D), a loss value for predicting Y with a decision
D. Here, D is an element of a finite set, a subset of R1,
or a set of probability density functions or probability
mass functions over Y. When a hypothesis class is a set
of real valued functions H = {fθk(X) : θk ∈ Θk}, the
loss function is given by L(Y, fθk(X)). For example,
the α-loss function is defined by

L(Y, fθk(X)) = |Y − fθk(X)|α, (α ≥ 1), (6)

and the 0-1 loss function is defined by

L(Y, fθk(X)) =
{
0 ; Y = fθk(X),
1 ; Y �= fθk(X).

(7)

When a hypothesis class is a set of conditional
probability distributions H = {pθk(Y |X) : θk ∈ Θk},
the loss function is given by L(Y, pθk(·|X)). For exam-
ple, the α-loss function is defined by

L(Y, pθk(·|X)) =
(
1− pθk(Y |X)

)α
, (8)

and the logarithmic loss function is given by

L(Y, pθk(·|X)) = − log pθk(Y |X). (9)

Other examples of the loss functions are shown in
[19]. Hereafter, we denote the loss L(Y, fθk(X)) or
L(Y, pθk(·|X)) by L(Z : fθk).

For a given number λ > 0, the extended stochastic
complexity (ESC) of zn is defined by [19], [20]

ESC(zn)

= − 1
λ
log
∫

exp

(
−λ

n∑
t=1

L(zt : fθk)

)
π(θk)dθk.

(10)

Here, the following lemma is shown in [19].

Lemma 1: For any zn, the ESC of zn for a given
(P ,H, π, L) can be written as follows:

ESC(zn) =
n∑

t=1

L̄(yt|xt, z
t−1), (11)

where

L̄(yt|xt, z
t−1)

= − 1
λ
log
∫

exp
(−λL(zt : fθk)

)
π(θk|zt−1)dθk,

(12)
π(θk|zt−1)

=

exp


−λ

t−1∑
j=1

L(zj : fθk)


 π(θk)

∫
exp


−λ

t−1∑
j=1

L(zj : fθk)


π(θk)dθk

, (13)

where π(θk|z0) = π(θk) and L(z0 : fθk) = 0. ✷

Using this lemma, the ESC can be applied to the
aggregating algorithm for on-line learning. Although
π(θk|zt−1) is a probability density on Θk, it is not gen-
erally equivalent to the Bayes posterior density. If we
use the logarithmic loss function and λ = 1, then

L̄(yt|zt−1, xt) = − log
∫
pθk(yt|xt)p(θk|zt−1)dθk,

(14)

p(θk|zt−1) =

t−1∏
j=1

pθk(yj |xj)π(θk)

∫ t−1∏
j=1

pθk(yj |xj)π(θk)dθk

, (15)

where p(θk|zt−1) is the Bayesian posterior density of
θk.

3. Main Results: Analysis of ESC

At first, we define h(xn) and h(zn|θk) by

h(zn) =
∫

exp

(
−λ

n∑
t=1

L(zt : fθk)

)
π(θk)dθk,

(16)

and

h(zn|θk) = exp

(
−λ

n∑
t=1

L(zt : fθk)

)
, (17)

respectively. Then, the following lemma can be derived.
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Lemma 2: For h(zn), h(zn|θk), and π(θk|zn), the fol-
lowing equation is satisfied.

h(zn) =
h(zn|θk)π(θk)
π(θk|zn)

. (18)

(Proof) This is obvious from definition. ✷

Equation (18) is a generalized version of the Bayes rule

p(zn) =
p(zn|θk)π(θk)
p(θk|zn)

. (19)

From (18), we have

ESC (zn)

= − 1
λ
log h(zn|θk)π(θk) +

1
λ
log π(θk|zn). (20)

Therefore if the asymptotic formula of log π(θk|zn) is
shown, we can analyze ESC (zn).

Next, we show an interesting and important prop-
erty of π(θk|zn). For many practical probability mod-
els, the Bayes posterior density converges to the normal
distribution [1], [3]. We call this property asymptotic
normality. We can also show the asymptotic normality
of π(θk|zn).

At first, we define the information matrices I∗(θk)
and J∗(θk) as follows:

I∗(θk) = −E∗
[
∂2 log h(Z|θk)
∂θk(∂θk)T

]

= λE∗
[
∂2L(Z : fθk)
∂θk(∂θk)T

]
, (21)

and

J∗(θk) = E∗
[
∂ log h(Z|θk)

∂θk

∂ log h(Z|θk)
(∂θk)T

]

= λ2E∗
[
∂L(Z : fθk)

∂θk

∂L(Z : fθk)
(∂θk)T

]
, (22)

where E∗[·] means the expectation by the true distribu-
tion p∗(·), and T is the transpose of a vector. Although
I∗(θk) and J∗(θk) may not exist for some ture distri-
bution, we assume that these exist for ∀θk ∈ Θk.

The estimators, θ̂k and θ̃k, and the optimal param-
eter θk∗

are defined as follows:

θ̂k = argmin
θk

1
n

n∑
t=1

L(zt : fθk), (23)

θ̃k = argmax
θk
π(θk|zn), (24)

and

θk∗ = argmin
θk
E∗ [L(Z : fθk)] . (25)

Let Bδ(θk∗) be the ball Bδ(θk∗) =
{
θk ∈ Θk

∣∣‖θk −
θk∗‖ < δ

}
on Θk for ∀δ > 0. Similarly, we define

Bδ(θ̃k) =
{
θk ∈ Θk

∣∣‖θk − θ̃k‖ < δ}.
At first, we show a condition which we require for

prior π(θk).

Condition 1: For ∀θk ∈ Θk, ∃c1 < π(θk) < ∃c2.
Here c1 and c2 are some positive value. π(θk) is twice
continuously differentiable on Θk.

Next, we give a list of conditions which will be
needed in our derivations. These conditions have ap-
peared in [8], p.238.

Condition 2:

(1) Θk is compact.
(2) θk∗ is unique and in the interior of Θk.
(3) I∗(θk) is continuously differentiable with respect

to θk and I∗(θk∗) is a positive definite.
(4) 1

n

∑n
t=1 L(zt : fθk) is almost surely (a.s.) continu-

ous on Θk for ∀n ∈ {1, 2, · · ·}.
(5) 1

n

∑n
t=1 L(zt : fθk) → E∗ [L(Z : fθk)], a.s. uni-

formly on Θk.
(6) E∗ [L(Z : fθk)] is twice continuously differentiable

on Θk. 1
n

∑n
t=1 L(zt : fθk) for ∀n ∈ {1, 2, · · ·} is

almost surely twice continuously differentiable on
Θk.

(7)
1
n

∂

∂θk

n∑
t=1

L(zt : fθk) → ∂

∂θk
E∗ [L(Z : fθk)] , a.s.

1
n

∂2

∂θk(∂θk)T

n∑
t=1

L(zt : fθk)

→ E∗
[
∂2L(Z : fθk)
∂θk(∂θk)T

]
=

1
λ
I∗(θk), a.s.

uniformly on Θk.
(8) (The central limit theorem) 1√

n

∑n
t=1

∂L(Zt:f
θk∗ )

∂θk

converges in distribution to the normal distribu-
tion N

(
0, 1

λ2 J
∗(θk)

)
. ✷

Example 1 ([19]): Let X = {X = (X1, X2, · · · , Xk)T

∈ [0, 1]k : X2
1 +X2

2 + · · ·Xn
k ≤ 1} and Y = [0, 1]. Let

Θk = {θk = (θ1, θ2, · · · , θk)T ∈ [0, 1]k : θ2
1+θ

2
2+· · · θ2

k ≤
1} and H = {fθk(X) = (θk)TX : X ∈ X , θk ∈ Θk}. In
this case, Condition 2, (1) is satisfied. We apply the
quadratic loss function: L(Y, fθk(X)) = (Y −fθk(X))2.
Then Condition 2, (4) is obviously satisfied. From

I∗(θk) = λE∗
[
∂2(Y − (θk)TX)2

∂θk(∂θk)T

]
, (26)

we have

I∗i,j = 2λE∗ [XiXj ] , (27)

where I∗i,j is the i − j-th element of I∗(θk). That is,
I∗(θk) = 2λE∗ [XXT

]
. If 0 < E∗ [(Xi)2

]
for ∀i ∈

{1, 2, · · · , k}, then I∗(θk) is a positive definite and Con-
dition 2, (3) is satisfied. Moreover, we have

E∗ [L(Y, fθk(X))]

= E∗
[(
Y − (θk)TX

)2]
= E∗ [Y 2

]− 2
k∑

i=1

θiE
∗ [Y Xi]
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+
k∑

i=1

k∑
j=1

θiθjE
∗ [XiXj ] . (28)

Then we have
∂E∗ [L(Y, fθk(X))]

∂θi

= −2E∗ [Y Xi] + 2
k∑

j=1

θjE
∗ [XiXj ] , (29)

for i = 1, 2, · · · , k. That is,
∂E∗ [L(Y, fθk(X))]

∂θk

= −2E∗[Y X ] + 2E∗ [XXT
]
θk, (30)

Therefore, if θk∗ exists in the interior of Θk, then it
satisfies the normal equation:

E∗[XXT ]θk∗ = E∗[Y X ]. (31)

If we can assume that {E∗[XXT ]}−1 exists, then
we have θk∗ = {E∗[XXT ]}−1E∗[Y X ]. Of course,
{E∗[XXT ]}−1E∗[Y X ] ∈ Θk is not always satisfied.
If {E∗[XXT ]}−1E∗[Y X ] /∈ Θk, then the hypothesis
class H = {fθk(X) = (θk)TX : X ∈ X , θk ∈ Θk} is
unsuitable for the true distribution. Here, we assume
0 <

∥∥{E∗[XXT ]}−1E∗[Y X ]
∥∥2
< 1. This means that

the hypothesis class is suitable for the true distribution.
On this case, θk∗ uniquely exists in Θk and Condition
2, (2) is satisfied.

Since X and Y have the finite variances,
1
n

∑n
t=1 xt(xt)T → E∗[XXT ], a.s., 1

n

∑n
t=1 ytxt →

E∗[Y X ], a.s., and 1
n

∑n
t=1(yt)2 → E∗[Y 2], a.s. [4]. On

the other hand, 1
n

∑n
t=1 L(zt : fθk) is given by

1
n

n∑
t=1

L(zt : fθk) =
1
n

n∑
t=1

(yt − fθk(xt))
2
. (32)

Therefore, Condition 2, (5)～(7) are obviously satisfied.
Moreover, since E∗

[
1√
n

∑n
t=1 L(Zt : fθk∗)

]
= 0 and the

variance of L(Zt : fθk∗) is finite, Condition 2, (8) is
satisfied from the central limit theorem [4]. ✷

Example 2: Let X = {X = (X1, X2, · · · , Xk)T ∈
Rk} and Y = R1. Let Θk = {θk = (θ1, θ2, · · · , θk)T ∈
Rk : θ2

1 + θ2
2 + · · · θ2

k ≤ Cθ} and H = {fθk(X) =
(θk)TX : X ∈ X , θk ∈ Θk}. We apply the quadratic
loss function: L(Y, fθk(X)) = (Y − fθk(X))2.

From the discussion similar to Example 1, we have
θk∗ = {E∗[XXT ]}−1E∗[Y X ] when {E∗[XXT ]}−1 ex-
ists. Setting that Cθ is appropriately large, θk∗ is
unique in the interior of Θk. We can see that this ex-
ample satisfys Condition 2 from the same discussion as
Example 1. ✷

For other examples satisfying the above conditions,
see [8]. Many practical model classes with suitable loss
function satisfy the above conditions. Under these con-
ditions, the following properties have been shown [8].

Lemma 3 ([8], p.238): If Condition 2 holds, then θ̂k

uniquely exists in Θk and is a consistent estimator.
That is,

θ̂k → θk∗, a.s. (33)
✷

Next we consider the distribution of θ̂k. It is well
known that θ̂k converges in law to the normal distri-
bution for many practical model class. For example,
see [7], [8].

Lemma 4 ([8], p.239): If Condition 2 holds, then the
distribution of

√
n(θ̂k − θk∗) converges in law to the

normal distribution:

N
(
0, {I∗(θk∗)}−1J∗(θk∗){I∗(θk∗)}−1

)
.

✷

Next, we show the important property of π(θk|zn).

Theorem 1: Assuming Conditions 1 and 2 and defin-
ing ξk =

√
n(θk − θ̂k) and

πξ(ξk|zn) =
1

√
n

k
π(θk|zn), (34)

the following equation is satisfied.

πξ(ξ̂k|zn) →
(

1
2π

)k/2√
det I∗(θ̂k) a.s. (35)

where ξ̂k = 0†.
(Proof) See Appendix A. ✷

Moreover, we can replace θ̂k by θ̃k. That is, we
have the following theorem.

Theorem 2: Assuming Conditions 1 and 2 and defin-
ing ηk =

√
n(θk − θ̃k) and

πη(ηk|zn) =
1

√
n

k
π(θk|zn), (37)

then the following equation is satisfied.

πη(η̃k|zn) →
(

1
2π

)k/2√
det I∗(θ̃k) a.s. (38)

†Moreover, the sequences of hξ(ξ
k|zn) converge to the

normal distribution almost surely. That is, letting E be
arbitrary rectangle on ξk-space, the following equation is
satisfied.∫

E

πξ(ξ
k|zn)dξk

→
√

det I∗(θ̂k)

(2π)k/2

∫
E

exp
{
−1

2
‖ξk‖2

I∗(θ̂k)

}
dξk, a.s.

(36)
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where η̃k = 0†.
(Proof) See Appendix B. ✷

Therefore, the sequence of distributions π(θk|zn),
n = 1, 2, · · ·, each of which is an extended version of
the Bayes posterior distribution, has the property of
asymptotic normality. Its asymptotic variance - co-
variance matrix is given by {I∗(θ̂k)}−1, which is es-
sential to this problem. In this paper, we do not
assume that the true distribution exists in the para-
metric model class Pk. In this case, the distribu-
tion of the minimum loss estimator converges in law
to the normal distribution with variance - covari-
ance matrix {I∗(θk∗)}−1J∗(θk∗){I∗(θk∗)}−1. However,
only {I∗(θ̂k)}−1 appears in the asymptotic distribution
π(θk|zn). This is the same property as the Bayesian
posterior density.

Using this theorem, we have the following theorem.

Theorem 3: Under Conditions 1 and 2, the asymp-
totic formula of ESC(zn) is given by

ESC (zn) =
n∑

t=1

L(zt : fθ̂k) +
k

2λ
log

n

2π

+
1
λ
log

√
det I∗(θ̂k)

π(θ̂k)
+ o(1), a.s. (40)

=
n∑

t=1

L(zt : fθ̃k) +
k

2λ
log

n

2π

+
1
λ
log

√
det I∗(θ̃k)

π(θ̃k)
+ o(1), a.s. (41)

(Proof) This is obvious from Eqs. (17), (20), (35), and
(38). ✷

The above theorem shows an asymptotic formula
for the sequences which are almost surely emitted from
the true distribution. Here, θ̂k and θ̃k are the random
variables based on the true distribution.

Using Lemmas 3 and 4, we have the following
lemma.

Lemma 5 ([8], pp.240–241): Under Condition 2, we
have

E∗
[
log

h(Zn|θ̂k)
h(Zn|θk∗)

]
→ TrJ∗(θk∗){I∗(θk∗)}−1

2λ
,

(42)

where Tr means the trace of a matrices. ✷

From the above discussion, we have the asymptotic
formula of the expectation of ESC (zn), E∗ [ESC (Zn)].

Theorem 4: Under Conditions 1 and 2,
E∗ [ESC(Zn)] satisfies

E∗ [ESC (Zn)]

= E∗ [L(Z : fθk∗)] +
k

2λ
log

n

2π

− TrJ∗(θk∗){I∗(θk∗)}−1

2λ

+
1
λ
log

√
det I∗(θk∗)
π(θk∗)

+ o(1). (43)

(Proof) Applying the bounded convergence theorem
to Eq. (40) and using Eq. (42), we have (43). ✷

4. Discussion

We have derived the asymptotic formula of ESC which
holds almost surely. Although Yamanishi derived an
asymptotic bound of ESC satisfied uniformly for all in-
dividual sequences, we have discussed almost sure con-
vergence of ESC. Therefore, J∗(θ̂k) and I∗(θ̂k) which
are defined using expectation by the true distribution
appear in our asymptotic formula of ESC.

If the true distribution exists in the parametric
model class Pk, then J∗(θk∗) = cI∗(θk∗) is satis-
fied for some loss functions [8], where c is some con-
stant. Then, we have TrJ∗(θk∗){I∗(θk∗)}−1 = ckk and
E∗ [ESC (Zn)] satisfies the following equation:

E∗ [ESC (Zn)]

= E∗ [L(Z : fθk∗)] +
k

2λ
log

n

2πeC

+
1
λ
log

√
det I∗(θk∗)
π(θk∗)

+ o(1), (44)

where C = ck. This is a similar equation with the re-
sult of Clarke and Barron’s asymptotics for the Bayes
method. If we assume the logarithmic loss function
and λ = 1, then c = 1. On this case, Eq. (44) is identi-
cal with the asymptotic formula derived by Clarke and
Barron.

In [19], Yamanishi discussed the upper bound of
ESC which holds uniformly for all data sequences. As-
suming a source with the true distribution, it may be
reasonable to apply the asymptotics for data sequences
which is almost surely emitted from the source to eval-
uate the performancs of prediction. However, for the
purpose of inductive learning, it is also desired to eval-
uate the performance of learning algorithm for each of
all data sequences. It will be a future work to derive

†Moreover, the sequences of hη(ηk|zn) converge to the
normal distribution almost surely. That is, letting E be
arbitrary rectangle on ηk-space, the following equation is
satisfied.∫

E

πη(ηk|zn)dηk

→
√

det I∗(θ̃k)

(2π)k/2

∫
E

exp
{
−1

2
‖ηk‖2

I∗(θ̃k)

}
dηk, a.s.

(39)
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the correct asymptotic formula within an error of o(1)
which holds uniformly for all individual sequences.

5. Conclusion

In this paper, we have analyzed the almost sure and
mean convergence of ESC. Although Yamanishi con-
centrated mainly on the aggregating algorithm and the
wost case performance and derived the upper bound
of ESC satisfying uniformly for all data sequences and
that of the asymptotic expectation of ESC, we have de-
rived the asymptotic formulas of ESC in the meaning
of almost sure and mean convergence. As a result, we
have the similar type of asymptotics with Bayes method
within an error of o(1). It has been shown that Yaman-
ishi’s upper bound of asymptotic expectation of ESC is
tight within an error of o(1). The asymptotic normality
is essential in this analysis.
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Appendix A: Proof of Theorem 1

The similar discussion in order to show the asymptotic
normality of the Bayes posterior density appeared in
[1], pp.285–297, and [5]. We discuss the asymptotic
normality around the minimum loss estimator although
Bernard and Smith discussed that around the maxi-
mum posterior estimator. Since their conditions (c.1)
～(c.3) in [1] don’t directly lead Theorem 1, we should
give the proof of Theorem 1.

At first, we show the first part of the theorem,
Eq. (35). Define

Kn(θk) = log π(θk|zn), (A· 1)
K ′′

n(θ
k) =

∂2Kn(θk)
∂θk(∂θk)T

, (A· 2)

From the Taylor expansion with respect to θk, we have

π(θk|zn)

= π(θ̂k|zn) exp
{
(θk − θ̂k)TK ′

n(θ̂
k)
}

· exp
{
1
2
(θk − θ̂k)T (I +Rn)K ′′

n(θ̂
k)(θk − θ̂k)

}
,

(A· 3)
where Rn is given by

Rn = K ′′
n(θ

k+){K ′′
n(θ̂

k)}−1 − I, (A· 4)
for some θk+ lying between θk and θ̂k.

Since θ̂k minimizing h(zn|θk) is almost surely
unique in the interior of Θk when n→ ∞ from Condi-
tion 2, (2) and Lemma 3, K ′

n(θ̂
k) is given by

K ′
n(θ̂

k) =
∂ log h(zn|θk)

∂θk

∣∣∣∣
θk=θ̂k

+
∂ log π(θk)
∂θk

∣∣∣∣
θk=θ̂k

=
∂ log π(θk)
∂θk

∣∣∣∣
θk=θ̂k

, a.s. (A· 5)

when n→ ∞. On the other hand, from

K ′′
n(θ

k) =
∂2 log h(zn|θk)
∂θk(∂θk)T

+
∂2 log π(θk)
∂θk(∂θk)T

, (A· 6)

we have

− 1
n
K ′′

n(θ
k) → I∗(θk), a.s. (A· 7)

uniformly for ∀θk ∈ Θk because of Condition 2, (7).
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Since

θ̂k → θk∗, a.s. (A· 8)
is satisfied from Lemma 3, we have Bδ′(θ̂k) ⊂ Bδ′′(θk∗)
a.s. when n → ∞ for 0 < ∀δ′ < ∀δ′′. Since (A· 8) is
satisfied and I∗(θk) is continuously differentiable with
respect to θk, we have

K ′′
n(θ

k+){K ′′
n(θ̂

k)}−1 → I∗(θk+){I∗(θ̂k)}−1, a.s.

(A· 9)
uniformly for ∀θk ∈ Bδ(θk∗) for ∀δ > 0. On the other
hand, from the continuity of I∗(θk), there exists some
positive number ∃δε > 0 for ∀ε > 0 such that

I −A(ε) ≤ I∗(θk){I∗(θk∗)}−1 ≤ I +A(ε), (A· 10)
for ∀θk ∈ Bδε(θk∗). Here, I is the k× k identity matrix
and A(ε) is a k × k symmetric positive-definite matrix
whose largest eigenvalue tends to 0 as ε → 0. Here, δε
depends on ε. Since I∗(θk) is continuous, δε → 0 when
ε→ 0.

Therefore, since (A· 9) and (A· 10) are satisfied and
Bδ′(θ̂k) ⊂ Bδ′′(θk∗) a.s. when n → ∞ for 0 < ∀δ′ <
∀δ′′, there exists ∃δε > 0 for ∀ε > 0 such that

I −A(ε) ≤ K ′′
n(θ

k){K ′′
n(θ̂

k)}−1 ≤ I +A(ε), a.s.

(A· 11)
for ∀θk ∈ Bδε(θ

k∗) when n → ∞†. Here, δε → 0 when
ε→ 0.

On the other hand, defining

c̄f = max
θk∈Θk,1≤i≤k

∣∣∣∣∂ log π(θk)
∂θi

∣∣∣∣ , (A· 12)

we have

exp{−c̄fδε} ≤ exp
{
(θk − θ̂k)TK ′

n(θ̂
k)
}

≤ exp{c̄fδε}, a.s. (A· 13)
for ∀θk ∈ Bδε(θ̂k) when n→ ∞ from Eq. (A· 5).

Let a(ε) and a(ε) be the maximum and the min-
imum eigenvalues of A(ε) respectively. And we define
ln and ln as follows:

ln = sup
θk∈Bδ(θk∗)

λn(θk), (A· 14)

and

ln = inf
θk∈Bδ(θk∗)

λn(θk), (A· 15)

for some δ > δε, where λn(θk) and λn(θk) are the max-
imum and the minimum eigenvalues of K ′′(θk) respec-
tively. Defining

uk =
{
(I +Rn)K ′′

n(θ̂
k)
}1/2

(θk − θ̂k), (A· 16)
tn = δε(1− a(ε))1/2ln

1/2, (A· 17)

and

sn = δε(1− a(ε))1/2ln
1/2
, (A· 18)

we have{
θk
∣∣∣‖uk‖ < tn

}
⊂ Bδε(θ̂

k) ⊂
{
θk
∣∣∣‖uk‖ < sn

}
.

(A· 19)
From (A· 13)～(A· 19),

Pn(δε) =
∫

Bδε (θ̂k)

π(θk|zn)dθk, (A· 20)

is almost surely upper bounded by

π(θ̂k|zn) exp{c̄fδε}
{
det
(
I −A(ε))}−1/2

· {detK ′′
n(θ̂

k)}−1/2

·
∫
‖uk‖<sn

exp
{
−1
2
(uk)Tuk

}
duk, (A· 21)

and lower bounded by

π(θ̂k|zn) exp{−c̄fδε}
{
det
(
I +A(ε)

)}−1/2

· {detK ′′
n(θ̂

k)}−1/2

·
∫
‖uk‖<tn

exp
{
−1
2
(uk)Tuk

}
duk, (A· 22)

when n→ ∞.
From Eqs. (A· 7) and (A· 8), we have ln → ∞, a.s.

and ln → ∞, a.s. when n → ∞. Therefore, sn → ∞,
a.s. and tn → ∞, a.s. are satisfied when n→ ∞. Then,
when n→ ∞, we have{

det
(
I −A(ε))}1/2 exp{−c̄fδε} lim

n→∞Pn(δε)

≤ lim
n→∞

πξ(ξ̂k|zn)(2π)k/2{
det I∗(θ̂k)

}1/2

≤ {
det
(
I +A(ε)

)}1/2 exp{c̄fδε} lim
n→∞Pn(δε), a.s.

(A· 23)
from Eqs. (34) and (A· 7).

Since δε → 0 when ε→ 0, we can set that the pos-
itive constants ε > 0 and δε > 0 are abitrary small.
Therefore, since limn→∞ Pn(δε) ≤ 1 is satisfied for
∀δε > 0, we have

lim
n→∞πξ(ξ̂k|zn) ≤ {det I∗(θ̂k)}1/2

(2π)k/2
, a.s. (A· 24)

If limn→∞ Pn(δε) → 1, a.s. for ∀δε > 0 is satisfied, then

πξ(ξ̂k|zn) → {det I∗(θ̂k)}1/2

(2π)k/2
, a.s. (A· 25)

†In this paper, for some events An, n = 1, 2, · · ·, we
denote “P ∗(∪∞

n=1 ∩∞
k=n Ak) = 1” as “A, a.s. when n → ∞”.
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can be derived.
Then, we prove limn→∞ Pn(δε) → 1, a.s. for ∀δε >

0 at last. We have
1
n
{Kn(θk)−Kn(θk∗)}

=
1
n
log

h(zn|θk)
h(zn|θk∗)

+
1
n
log

π(θk)
π(θk∗)

= −λ
n

n∑
t=1

L(zt : fθk) +
λ

n

n∑
t=1

L(zt : fθk∗)

+
1
n
log

π(θk)
π(θk∗)

→ −λE∗ [L(Z : fθk)] + λE∗ [L(Z : fθk∗)] , a.s.

(A· 26)
uniformly for ∀θk /∈ Bδε(θk∗) for ∀δε > 0 from Condi-
tion 1 and Condition 2, (5). Because E∗ [L(Z : fθk∗)] is
an unique minimum of E∗ [L(Z : fθk)] from Condition
2, (2), there exists some positive constant ∃Cδε > 0 for
∀δε > 0 such that

1
n
{Kn(θk)−Kn(θk∗)} < −Cδε , a.s. (A· 27)

uniformly for ∀θk /∈ Bδε(θk∗) when n→ ∞. Therefore,

π(θk|zn)
π(θk∗|zn)

< exp {−nCδε} , a.s. (A· 28)

is satisfied uniformly for ∀θk /∈ Bδε(θk∗) when n → ∞
for ∀δε > 0. On the other hand, we have

πξ(ξk∗|zn) <
{det I∗(θ̂k)}1/2

(2π)k/2
, a.s. (A· 29)

for ∀θk ∈ Bδε(θk∗) when n → ∞ from (A· 8) and
(A· 24), where ξk∗ =

√
n(θk∗ − θ̂k). Here, det I∗(θ̂k) →

det I∗(θk∗), a.s. is satisfied because of Condition 2, (3)
and Lemma 3. Therefore, there exists some positive
constant C∗ > 0 such that

π(θk∗|zn) < C∗√nk
, a.s. (A· 30)

when n→ ∞ because of Eq. (34). Therefore, for ∀δε >
0,

π(θk|zn) < π(θk∗|zn) exp{−nCδε}, a.s.
< C∗√nk exp{−nCδε} → 0, a.s. (A· 31)

is satisfied uniformly for θk /∈ Bδε(θk∗) from inequa-
tions (A· 28) and (A· 30). Since Θk is compact from
Condition 2, (1), we have∫

θk /∈Bδε (θk∗)

π(θk|zn)dθk → 0, a.s. (A· 32)

for ∀δε > 0. This means∫
θk∈Bδε (θk∗)

π(θk|zn)dθk → 1, a.s. (A· 33)

for ∀δε > 0.
From (A· 8), we have Bδ′(θk∗) ⊂ Bδ′′(θ̂k), a.s.

when n → ∞ for 0 < ∀δ′ < ∀δ′′. Therefore we have
limn→∞ Pn(δε) = 1, a.s., then we have (35)†. ✷

Appendix B: Proof of Theorem 2

From the Taylor expansion with respect to θk around
θ̃k, we have

π(θk|zn) = π(θ̃k|zn)

· exp
{
−1
2
(θk − θ̃k)T (I + R̃n)K ′′(θ̃k)(θk − θ̃k)

}
,

(A· 35)
where R̃n is given by

R̃n = K ′′
n(θ

k+){K ′′
n(θ̃

k)}−1 − I, (A· 36)
for some θk+ lying between θk and θ̃k. Therefore, we
can see that the identical discussion with Appendix A
leads Theorem 2. ✷

†It is obvious that (36) can be similarly proved by
bounding∫

E

πξ(ξ
k|xn)dξk, (A· 34)

for arbitrary rectangle ∀E.
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