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A Source Model with Probability Distribution over Word

Set and Recurrence Time Theorem
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and Shigeichi HIRASAWA††, Fellow

SUMMARY Nishiara and Morita defined an i.i.d. word-
valued source which is defined as a pair of an i.i.d. source with
a countable alphabet and a function which transforms each sym-
bol into a word over finite alphabet. They showed the asymptotic
equipartition property (AEP) of the i.i.d. word-valued source and
discussed the relation with source coding algorithm based on a
string parsing approach. However, their model is restricted in
the i.i.d. case and any universal code for a class of word-valued
sources isn’t discussed. In this paper, we generalize the i.i.d.
word-valued source to the ergodic word-valued source which is
defined by an ergodic source with a countable alphabet and a
function from each symbol to a word. We show existence of
entropy rate of the ergodic word-valued source and its formula.
Moreover, we show the recurrence time theorem for the ergodic
word-valued source with a finite alphabet. This result clarifies
that Ziv-Lempel code (ZL77 code) is universal for the ergodic
word-valued source.
key words: word-valued source, word set, word sequences, re-
currence time, Ziv-Lempel code

1. Introduction

The source coding theorem and universality of coding
have been extended from the case of independently and
identically distributed (i.i.d.) sources to the cases of
stationary ergodic sources, stationary sources, and gen-
eral sources [4], [8], [10], [11]. The stationary source is
defined by a source whose probability structure does
not change for time shift per a symbol unit in a source
alphabet. It has an entropy rate that is a limit of the
compression rate. On the other hand, many researchers
have been studying the general sources that do not nec-
essarily have an entropy rate. Although the analysis
for the general sources is very essential in information
theory and the stationary ergodic sources are useful in
practice, we may find the interesting source model in
the intermediate between these model classes.

On the other hand, it may be natural to assume
the source model with the probability over a word set in
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some settings [12], [16], where we call a finite sequence a
word. In [3], p.83, word statistics and empirical entropy
in English are shown. Recently, Nishiara and Morita
[16] defined an i.i.d. word-valued source which is defined
as a pair of an i.i.d. source with a countable alphabet
and a function which transforms each symbol into a
word over a finite alphabet. They showed the asymp-
totic equipartition property (AEP) of the i.i.d. word-
valued source and discussed the relation with source
coding algorithm based on a string parsing approach.
However, their model is restricted in the i.i.d. case and
any universal code for a class of word-valued sources is
not discussed.

In this paper, we generalize the i.i.d. word-valued
source to the ergodic word-valued source which is de-
fined by an ergodic source with a countable alphabet
and a function from each symbol to a word. We show
the existence of an entropy rate of the ergodic word-
valued source when a word set is prefix free and de-
rive its formula. Moreover, we show the recurrence
time theorem for the ergodic word-valued source with
a finite alphabet. This result clarifies that Ziv-Lempel
code (ZL77 code) [23] is universal for the ergodic word-
valued source. In [13], T. Ishida et al. studied the uni-
versality of the ZL78 code [24] for sources which emit
a data sequence by block unit (the block stationary
source). The class of the ergodic word-valued sources
is more general than that discussed in [13]. Since the er-
godic word-valued source is generally a non-stationary
process, we can see the universality of the ZL77 code
is satisfied for a broader source model class than the
stationary sources. Therefore, superiority of ZL77 code
is shown from the viewpoint of the extent of target
sources.

2. The Ergodic Word-Valued Source

At first, we give the mathematical definition of the er-
godic word-valued source.

Let Y = Y1Y2Y3 · · · be an ergodic source with
countable alphabet Y . Let X be a finite alphabet and
X ∗ be the set of all finite sequences over X . Consid-
ering a mapping φ : Y → X ∗, we define w = φ(y),
(w ∈ X ∗) as a word. Here, The range of φ = φ(y),
y ∈ Y is denoted by W , that is w ∈ W .
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Fig. 1 An example of the prefix word set.

Example 1: Let Y be Y = {0, 1, 2, 3}, and X be
X = {0, 1}. And let φ : Y → X ∗ be defined by
φ(0) = 0, φ(1) = 10, φ(2) = 110, φ(3) = 111. Then,
W = {0, 10, 110, 111}. Figure 1 shows the word tree
representing the word set. ✷

Let |w| be the length of a word w ∈ W . For exam-
ple, if w = 1010 then |w| = 4.

Let X = X1X2X3 · · · be a source which is the tar-
get of data compression. The source X = X1X2X3 · · ·
is defined as a concatenation of sequences W1 = φ(Y1),
W2 = φ(Y2), W3 = φ(Y3), · · · for Y = Y1Y2Y3 · · ·. We
call X the ergodic word-valued source. W1W2W3 · · · and
φ(Y1)φ(Y2)φ(Y3) · · · are also denoted by W and φ(Y)
respectively. Then W = φ(Y). The data sequence
emitted from the source X, that is a realization value,
is denoted by x = x1x2x3 · · ·. For each finite number
n ∈ Z+ = {1, 2, 3, · · ·}, we define Xn = X1X2X3 · · ·Xn

and xn = x1x2x3 · · ·xn. Similarly, for each finite
number m ∈ Z+, we define Y m = Y1Y2Y3 · · ·Ym,
ym = y1y2y3 · · · ym, Wm = W1W2W3 · · ·Wm and
wm = w1w2w3 · · ·wm. The mapping φ : Ym → Wm is
also denoted by φ(Y m) which is concatenating the se-
quences φ(Y1), φ(Y2), φ(Y3), · · ·, φ(Ym). Then Wm =
φ(Y m). A word sequence wm = w1w2 · · ·wm from a
source is just as it is regarded as a data sequence xn,
that is xn = wm if n = |w1|+ |w2|+ · · ·+ |wm| for some
given m.

The probability distributions of Y and W are de-
noted by

PY m(ym) = Pr{Y1 = y1, Y2 = y2, · · · , Ym = ym},
(1)

and

PW m(wm)
= Pr{W1 = w1,W2 = w2, · · · ,Wm = wm}, (2)

respectively. The relation between PY m(ym) and
PW m(wm) is given by

PW m(wm) =
∑

ym:wm=φ(ym)

PY m(ym). (3)

Whenm = 1, we briefly denote PW (w) = PW 1(w). The

probability distribution of the target source sequence X
is denoted by

PXn(xn) = Pr{X1 = x1, X2 = x2, · · · , Xn = xn}.
(4)

When n = 1, we briefly denote PX(x) = PX1(x). Using
notations asXj

i = XiXi+1 · · ·Xj and x
j
i = xixi+1 · · ·xj

for i < j, we also define

PXj
i
(xj

i )

= Pr{Xi = xi, Xi+1 = xi+1, · · · , Xj = xj}. (5)

If i = 1 for Xj
i then we abbreviate Xj

1 by Xj as Xn =
X1X2 · · ·Xn.

Definition 1: (A prefix word set) If each word ∀w ∈
W is not the prefix of other words ∀w′ ∈ W (w′ �= w),
then we call W a prefix word set. ✷

For example, letting X = {0, 1}, W =
{0, 10, 110, 111} is a prefix word set (See Fig. 1).

Denoting PXt
(x) = Pr{Xt = x}, we consider the

property of PXt
(x). If PXt

(x) does not depend on t,
then X is called a stationary source. However, the er-
godic word-valued source defined in this paper is not a
stationary source in general.

Example 2: Consider a simple example as W =
{00, 01, 10, 11}. Let Y be an i.i.d. source, that is
W is also an i.i.d. source. Denoting PW (00) = θ1,
PW (01) = θ2, PW (10) = θ3, we can calculate the proba-
bilities of events, for example PX8(01000110) = θ1θ

2
2θ3.

In this case, if t is an odd number then PXt
(0) =

θ1+θ2, else if t is an even number then PXt
(0) = θ1+θ3.

Therefore, the source is periodic but not stationary. ✷

If there exists

H(X) = lim
n→∞

1
n
Hn(Xn)

= lim
n→∞

[
− 1
n

∑
xn∈Xn

PXn(xn) logPXn(xn)

]
,

(6)

then we call H(X) as the entropy rate of X. Then, an
entropy rate of the word sequence W is given by

H(W) = lim
m→∞

1
m
Hm(Wm)

= lim
m→∞

[
− 1
m

∑
wm∈Wm

PW m(wm) logPW m(wm)

]
.

(7)

Let Li be the length of Wi, i.e., Li
def= |Wi| =

|φ(Yi)|. The expected word length rate E[|W |] =
E[|φ(Y )|] is defined by

E[|W |] = lim
m→∞

1
m
E

[
m∑

i=1

Li

]
, (8)
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where E[·] means an expectation.
Nishiara and Morita [16] showed the asymptotic

equipartition property (AEP) of the word valued source
when W is an i.i.d. source.

Lemma 1 (AEP of an i.i.d. word-valued source [16]):
Let Y be an i.i.d. source. If X = φ(Y) such that
H(Y) < ∞ and E[|W |] < ∞, we have

lim sup
n→∞

1
n

[
− logPXn(Xn)

]
� H(Y)

E[|W |] , a.s. (9)

and

lim sup
n→∞

1
n
E

[
− logPXn(Xn)

]
� H(Y)

E[|W |] . (10)

Furthermore, if W is a prefix word set, then we
have

lim
n→∞

1
n

[
− logPXn(Xn)

]
= H(X), a.s. (11)

and

H(X) =
H(W)
E[|W |] , (12)

where H(W) and E[|W |] are given by

H(W) = −
∑

w∈W
PW (w) logPW (w), (13)

and

E[|W |] =
∑

w∈W
|w|PW (w), (14)

from the definitions (7) and (8) respectively on this
case. ✷

In the following section, we generalize the i.i.d.
word-valued source to the ergodic word-valued source
which is defined by an ergodic source with a count-
able alphabet and a function from each symbol into a
word. We show the entropy rate of the ergodic word-
valued source. Here, cases exist in which the informa-
tion about a pair of a source Y and a mapping φ is
previously unknown in the practical case. Therefore, it
is important to construct a universal code whose mean
codelength converges to the entropy rate. In Sect. 4,
we show the recurrence time theorem. From this theo-
rem, we can see that the ZL77 code is universal for the
ergodic word-valued source.

3. Main Result I: The Entropy Rate of the Er-
godic Word-Valued Source

3.1 Main Theorem

At first, we show the entropy rate of the ergodic word-
valued source. If we know the probability structure, i.e.
a set of a source Y, a prefix word set W , and a mapping
φ, then we can encode X with a mean codelength which
converges to the lower bound H(X) almost surely.

Theorem 1: For a prefix word set W , let the prob-
ability distribution PW m(Wm) be a stationary ergodic
with respect to m. If H(W) < ∞ and E[|W |] < ∞,
then H(X) is given by

H(X) =
H(W)
E[|W |] . (15)

Moreover,

− 1
n
logPXn(X1X2 · · ·Xn) →

H(W)
E[|W |] , a.s. (16)

when n → ∞.
(Proof) See Appendix A. ✷

From Theorem 1, we have the following corollary
which gives the minimum coding rate of the ergodic
word-valued sources.

Corollary 1: For a prefix word set W , let the prob-
ability distribution PW m(Wm) be a stationary ergodic
with respect to m. If H(W) < ∞ and E[|W |] < ∞,

lim
n→∞

[
− 1
n
logPXi+n−1

i
(Xi+n−1

i )
]

= H(X) =
H(W)
E[|W |] , a.s. (17)

for ∀i ∈ {1, 2, 3, · · ·}.
(Proof) See Appendix B. ✷

3.2 Discussion

From the theorem, if the entropy rate of the word se-
quence, H(W), and the expected word length, E[|W |],
are given, then the entropy rate of X is given by
H(X) = H(W)

E[|W |] . The qualitative explanation of the
result is as follows: A word sequence W can be com-
pressed by H(W) per a word and the expected number
of symbols over X concatenated in a word is given by
E[|W |]. Therefore, a source sequence X can be com-
pressed by H(X) = H(W)

E[|W |] . Corollary 1 means that
the lower bound on the compression rate of the ergodic
word-valued source is also given by H(X) = H(W)

E[|W |] re-
gardless of the time point we begin to compress a data
sequence.

Nishiara and Morita [16] showed the AEP of the
i.i.d. word-valued source. Theorem 1 is a general ver-
sion of their result [16]. However, Nishiara and Morita
discussed the asymptotic properties of the i.i.d. word-
valued source with a non-prefix word set. The discus-
sion about the asymptotic properties in the case of a
non-prefix word set is future work.

4. Main Result II: Estimation of Entropy Rate
by a Recurrence Time Theorem

In practical cases, adaptive methods of data compres-
sion are useful [3].
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Because a probability structure may be unknown
in practice, we must estimate the probability structure
by a past data sequence to use a word-valued source
model for various practical problems. Then, we can
consider the estimation problems for the word-valued
source in this section. If the probability structure of
a word-valued source can be estimated by a past data
sequence, we can construct a universal code for it.

If a word set is known but the probability over
the word set is previously unknown, then the problem
is reduced to usual estimation of ergodic source. If a
word set is previously unknown, the estimation using
the probability model is computationally difficult in the
following meaning:

i) The probability structure must be estimated by the
word unit. Even if we can previously fix the up-
per limit of the maximum length of words for the
unknown target word set, the number of consider-
able word set is an exponential order with respect
to the maximum length of words.

ii) If we assume the cases such that the two candi-
date word sets W1 and W2 are applied to a data
sequence X, the gaps between words do not syn-
chronize between the two word sets.

In [21], adaptive methods are introduced for set-
tings such that the source distribution is known to be
stationary and ergodic, but no other information is
available. In that way, the time between events, called
recurrence time, is essential. Then we consider the es-
timation of the entropy rate based on the recurrence
time which is a foundation of Ziv-Lempel code [21]. If
we can estimate the entropy rate of a ergodic word-
valued source by observing a recurrence time similar to
Ziv-Lempel code, we can avoid the problems i) and ii).

Again we use a notation as Xj
i = XiXi+1 · · ·Xj ,

Y j
i = YiYi+1 · · ·Yj , and W j

i = WiWi+1 · · ·Wj for j � i
and i, j ∈ Z, where Z = {· · · ,−2,−1, 0, 1, 2, · · ·}. In
this section, in order to consider the recurrence time,
we redefine the infinite source sequence by

X = · · ·X−2X−1X0X1X2 · · · . (18)

Let Y = · · ·Y−2Y−1Y0Y1Y2 · · · be an ergodic source
with a finite alphabet Y . In Sect. 3, we let Y be a
countable alphabet. However we restrict Y to be a
finite alphabet in order to discuss universality. Simi-
larly to Sect. 3, the mapping φ : Y → W is denoted
by Wi = φ(Yi) for ∀i ∈ Z. Concatenating the se-
quence · · · , φ(Y−2), φ(Y−1), φ(Y0), φ(Y1), φ(Y2), · · ·, we
define the sequence · · ·W−2W−1W0W1W2 · · · =
· · ·φ(Y−2)φ(Y−1)φ(Y0)φ(Y1)φ(Y2) · · ·, which is de-
noted by φ(Y). We also denote as W def=
· · ·W−2W−1W0W1W2 · · ·φ(Y). The source sequence
X which is the object of source coding is defined by
rewriting W using symbols in X and X1X2X3 · · · =
W1W2 · · ·. That is, the gap between W0 and W1 is
located between X0 and X1.

4.1 Main Theorem

Considering the data sequence X l+i
1+i = X1+iX2+i · · ·

Xl+i with length l for ∀i ∈ Z, we define N i
l to be the

time of the first recurrence of X l+i
1+i. That is, N

i
l is the

smallest integer N ∈ Z+ = {1, 2, · · ·} such that X l+i
1+i

equals X l+i+N
1+i+N .

N i
l = min{N � 1|X l+i

1+i = X l+i+N
1+i+N} (19)

For the conventional ergodic source, only the case of
i = 0 was considered [17], [19], [21]. This is because
a source sequence is emitted by the symbol unit in
X with a stationary probability and i is meaningless
for this source model. However, when a word set is
unknown, the gaps between words in a data sequence
x∞

i = xixi+1xi+2 · · · cannot be found from only x∞
i .

Therefore, we must construct a universal code which
works with no problem for the sequence which does not
necessarily start at a gap between words.

Then, we can show the following theorem which
is a generalized version of the conventional recurrence
time theorem [17], [19], [21]. The conventional recur-
rence time theorem was shown for the class of the er-
godic sources. The following theorem says that the
recurrence time theorem is satisfied for a more broad
model class.

Theorem 2 (A generalized recurrence time theorem):
Let W be a finite prefix word set. Let the probability
distribution PW m(Wm) over W be stationary and er-
godic with respect to m. Assuming PW (W1 = w) > 0
for ∀w ∈ W , we have

lim
l→∞

logN i
l

l
=

H(W)
E[|W |] = H(X), a.s. (20)

for ∀i ∈ Z.
(Proof) See Appendix C. ✷

Although N i
l in Theorem 2 is the time of the first

recurrence in a future sequence, the following reverse
variable is useful for source coding:

Ñ i
l = min{N � 1|Xi+l

i+1 = Xi−N+l
i−N+1}, (21)

for ∀i ∈ Z.
Then the following theorem obviously holds from The-
orem 2.

Theorem 3: Let W be a finite prefix word set. Let
the probability distribution PW m(Wm) over W be sta-
tionary and ergodic with respect to m. Assuming
PW (W1 = w) > 0 for ∀w ∈ W , we have

lim
l→∞

log Ñ i
l

l
=

H(W)
E[|W |] = H(X), a.s. (22)

for ∀i ∈ Z. ✷
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4.2 Universal Code for Word-Valued Sources

From this theorem, we can construct a FV-type univer-
sal code for the word-valued sources, which is a simpli-
fied variant of the Ziv-Lempel code.

Let Ñ i
l (X

i+l
∞ ) be the smallest integer N � 1 such

that Xi+l
i+1 = Xi−N+l

i−N+1. We append the integer encoding
of the pointer Ñ i

l (X
i+l
∞ ) in order to encode Xi+l

i+1. Then
we can encode Xi+l

i+1 with codelength

L(Xi+l
i+1|Xi

−∞)

= log Ñ i
l (X

i+l
∞ ) +O(log log Ñ i

l (X
i+l
∞ )). (23)

For example, if we use the Elias code ω∗, then its code-
length is upper bounded by [8]

log Ñ i
l (X

i+l
∞ ) + 2 log log Ñ i

l (X
i+l
∞ ) + 7. (24)

Theorem 3 says that the above code is asymptotically
optimal for ergodic word-valued sources.

When the true word set is unknown, the above F-
V code does not generally synchronize with the corre-
sponded word sequence. That is, the gaps between en-
coded blocks in x do not generally correspond to those
between words. However, because an integer i in the
above algorithm is arbitrary, even if we cannot specify
the gaps between words in a data sequence to be en-
coded, the algorithm is always universal for the ergodic
word-valued sources. That is, the pattern matching
algorithm which is a basis of the Ziv-Lempel code is ef-
fective not only for stationary and ergodic sources but
also for word-valued sources.

4.3 Discussions

From the viewpoint of asymptotic property, the length
of a source sequence Xn emitted from the source is the
E[|W |] times of that of the word sequence Wm which
corresponds to Xn. The recurrence time in X is also
the E[|W |] times of that in the word sequence W.

If we can assume a good parametric model class for
unknown sources, we can use the Laplace estimator to
estimate. When the good probability model class can-
not be assumed, the estimation using the recurrence
time is very useful. Of course, when the suitable para-
metric model can be set for the unknown source, its
performance of the estimation would be better for a
finite data size.

5. Conclusion

In this paper, we propose a new source model class,
called an ergodic word-valued source, and show the
time recurrence theorem. As a result, we show that the
Ziv-Lempel 77 code is universal for this model class.
Analysis of convergence speed of the universal coding
for the proposed model class and relation the ergodic
word-valued and AMS sources will be future work.
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Appendix A: Proof of Theorem 1

Since W is stationary and ergodic, when m → ∞

− 1
m

logPW m(W1W2 · · ·Wm) → H(W), a.s.

(A· 1)

holds from the ergodic theorem (Shannon-McMillan-
Breiman’s theorem [1], [7]).

For convenience, we define Nm
def= N(Wm). That

is

Nm
def= N(Wm) =

m∑
i=1

Li,

and Nm is a random variable depending on Wm.
Rewriting the word sequence W1W2 · · ·Wm for ∀m ∈
Z+, we have

W1W2W3 · · ·Wm = X1X2X3 · · ·XNm
. (A· 2)

From (A· 1), when m → ∞

− 1
m

logPXNm (X1X2 · · ·XNm
) → H(W), a.s.

(A· 3)

holds. This means

−Nm

m

1
Nm

logPXNm (X1X2 · · ·XNm
)

→ H(W), a.s. (A· 4)

when m → ∞.
On the other hand, since W is stationary and er-

godic, when m → ∞
Nm

m
→ E[|W |], a.s. (A· 5)

from the ergodic theorem.
Consider Xn to the contrary for an arbitrary n

(n = 1, 2, · · ·). Let Mn be the minimum length of Wm

such that Nm � n for given n ∈ Z+. That is,

Mn
def= min

m�1
{m|Nm � n}.

Then

NMn−1 < n � NMn
< n+ LMn

. (A· 6)

There exists some n ∈ Z+ satisfying Nm < n for
all m ∈ Z+ because Nm < ∞ for ∀m ∈ Z+. This
means thatm satisfyingNm < n can take an arbitrarily
large value if n → ∞. Because Nm < n is equivalent to
Mn > m, we have

lim
n→∞

Mn = ∞, (A· 7)

for all sample sequences. The above convergence was
shown by Nishiara and Morita in [16]. We have there-
fore

− 1
Mn

logPXNMn
(X1X2 · · ·XNMn

) → H(W), a.s.

(A· 8)

when n → ∞ from (A· 3) and (A· 7).
From the definition, the inequality NMn

− LMn
�

n � NMn
is satisfied ∀n ∈ Z+. We have therefore

Mn

NMn

� Mn

n
� Mn

NMn
− LMn

, (A· 9)

where ∀n ∈ Z+ for every sample sequence. Here we
have

Mn

NMn

→ 1
E[|W |] , a.s. (A· 10)

when n → ∞. This is because Mn → ∞ when
n → ∞ for every sample sequence and limm→∞

m
Nm

=
1

E[|W |] , a.s. On the other hand, we have

Mn

NMn
− LMn

=
Mn

NMn

NMn

NMn
− LMn

=
Mn

NMn

1

1− LMn

NMn

. (A· 11)

Here

Lm

m
→ 0, a.s. (A· 12)

when m → ∞ because limm→∞
Nm

m = E[|W |], a.s.
and Nm =

∑m
i=1 Li. Because Nm � m, we have

Lm

Nm
→ 0, a.s. (A· 13)

when m → ∞. Since Mn → ∞ when n → ∞, (A· 13)
means

1

1− LMn

NMn

→ 1, a.s. (A· 14)

when n → ∞. We have therefore
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lim
n→∞

Mn

NMn
− LMn

= lim
n→∞

Mn

NMn

lim
n→∞

1

1− LMn

NMn

=
1

E[|W |] , a.s. (A· 15)

when n → ∞. From (A· 9), (A· 10), and (A· 15), we
have

Mn

n
→ 1

E[|W |] , a.s. (A· 16)

when n → ∞.
At last, we shall complete the proof. From

NMn−1 < n � NMn
, we have

− 1
n
logPXNMn−1 (XNMn−1)

< − 1
n
logPXn(Xn)

� − 1
n
logPXNMn

(XNMn ). (A· 17)

Here we have

− 1
n
logPXNMn

(XNMn )

= −Mn

n

1
Mn

logPXNMn
(XNMn )

→ H(W)
E[|W |] , a.s. (A· 18)

when n → ∞ from (A· 8) and (A· 16).
On the other hand,

− 1
n
logPXNMn−1 (XNMn−1)

= −Mn

n

Mn − 1
Mn

1
Mn − 1

logPXNMn−1 (XNMn−1)

→ H(W)
E[|W |] , a.s. (A· 19)

when n → ∞ from (A· 8), (A· 16), and Mn−1
Mn

→ 1 when
n → ∞.

We have therefore

− 1
n
logPXn(X1X2 · · ·Xn) →

H(W)
E[|W |] , a.s.(A· 20)

when n → ∞. This is the last half of the theorem.
From the bounded convergence theorem [6], we

have

− 1
n
E [logPXn(X1X2 · · ·Xn)] →

H(W)
E[|W |] . (A· 21)

This means

H(X) =
H(W)
E[|W |] . (A· 22)

✷

Appendix B: Proof of Corollary 1

Because the proof of Corollary 1 is similar with that of
Theorem 1, we give an outline roughly.

From the identical discussion with (A· 7) in the
proof of Theorem 1, we have

Mk+n → ∞ (A· 23)

when n → ∞ for all fixed k ∈ Z+ and all sample se-
quences. Therefore, we have

− 1
Mk+n −Mk+1

logP
X

NMk+n
NMk+1

(X
NMk+n

NMk+1
)

→ H(W), a.s. (A· 24)

and

Mn −Mk+1

NMn
−NMk+1

→ 1
E[|W |] , a.s. (A· 25)

when n → ∞ for all fixed k ∈ Z+ from (A· 23) and the
ergodic theorem.

On the other hand, from the definition of Mn, we
have

NMi+n−1−1 < i+ n− 1 � NMi+n−1 (A· 26)

and

NMi−1 + 1 � i � NMi
(A· 27)

for all i, n ∈ Z+. We have therefore

− 1
n
logP

X
NMi+n−1−1
NMi

+1

(X
NMi+n−1−1

NMi
+1 )

� − 1
n
logPXi+n−1

i
(Xi+n−1

i )

� − 1
n
logP

X
NMi+n−1
NMi−1+1

(X
NMi+n−1
NMi−1+1

) (A· 28)

Using (A· 23) and (A· 24), we can show that the
right and left sides of (A· 28) converge to H(W)

E[|W |] almost
surely, then the proof is complete. ✷

Appendix C: Proof of Theorem 2

At first, consider a word sequence W j+l′

j+1 =
Wj+1Wj+2 · · ·Wj+l′ with length l′ for ∀j ∈ Z. Let-
ting M j

l′ be a first recurrence time of W j+l′

j+1 measured
per word unit which is given by

M j
l′ = min{N � 1|W l′+j

1+j = W l′+j+N
1+j+N }, (A· 29)

we have

lim
l′→∞

logM j
l′

l′
= H(W), a.s. (A· 30)

for ∀j ∈ Z from the recurrence time theorem
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which is shown in [21], p.2046, because W j+l′

j+1 =
Wj+1Wj+2 · · ·Wj+l′ is a stationary, ergodic, finite-
alphabet source.

Let L = L(W j+l′

j+1 ) = Lj+1 + Lj+2 + · · · + Lj+l′ .
Since W is a stationary, ergodic, finite-alphabet source,
when l′ → ∞ we have

L

l′
=

Lj+1 + Lj+2 + · · ·+ Lj+l′

l′

→ E[|W |], a.s. (A· 31)

for ∀j ∈ Z.
On the other hand, we consider the recur-

rence time of Xi+l
i+1 measured by the symbol unit in

X . We rewrite · · ·XiXi+1Xi+2 · · ·Xi+lXi+l+1 · · · by
· · ·WjWj+1Wj+2 · · ·Wj+l′Wj+l′+1 · · ·, where the word
sequence W j+l′

j+1 includes Xi+l
i+1 in its interior. That is,

there exist some α and β (α, β ∈ {0, 1, 2, · · ·}) such that

W j+l′

j+1 = Xi+β+l
i−α+1

= Xi−α+1 · · ·Xi︸ ︷︷ ︸
α

Xi+1 · · ·Xi+l︸ ︷︷ ︸
l

Xi+l+1 · · ·Xi+l+β︸ ︷︷ ︸
β

,

(A· 32)

where we can set that α and β are bounded because
the word set is finite. (For example, Xi+l

i+1 = 0001110 is
included in W j+l′

j+1 = 010001110111 where l = 7, l′ = 3,
wj+1 = 0100, wj+2 = 011, and wj+3 = 101. α = 2 and
β = 3 in this case.) That is, L = Lj+1 + Lj+2 + · · · +
Lj+l′ = l + α + β � l, and the correspondence from
Xi+l

i+1 to W j+l′

j+1 is not unique.

Letting NW = N(W
j+Mj

l′
j+1 ) = Lj+1 + Lj+2 + · · ·+

Lj+Mj

l′
, we have

Xi+1Xi+2 · · ·Xi+l = Xi+NW+1Xi+NW+2 · · ·Xi+NW+l,

because W l′+j
1+j = W

l′+j+Mj

l′

1+j+Mj

l′
and W j+l′

j+1 includes Xi+l
i+1

in its interior.
However, the recurrence time of Xi+1Xi+2 · · ·Xi+l

in X measured per symbol unit of X may be smaller
than NW . This is because M j

l′ is a first recurrence time
of W j+l′

j+1 measured per word unit, that is all of the
subsequences Xn+l+j

n+1+j , n ∈ {1, 2, · · · , N} which contain
subsequences straddled words are not considered to find
M j

l′ . That is, the recurrence time of Xi+1Xi+2 · · ·Xi+l

measured per symbol unit of X can be selected with
no relation to gaps between words. Therefore, letting
the recurrence time of Xj+1Xj+2 · · ·Xj+l measured per
symbol unit of X be N i

l ,

N i
l � NW , (A· 33)

holds.
Since M j

l′ → ∞, a.s. when l′ → ∞ for ∀j ∈ Z
from (A· 30), we have

N i
l

M j
l′

� NW

M j
l′

=
Lj+1 + Lj+2 + · · ·+ Lj+Ml′

M j
l′

→ E[|W |], a.s. (A· 34)

from (A· 31).
Therefore, since l′ → ∞ when l → ∞, we have

logN i
l

l
� logNW

l
=

logM j
l′ + log NW

Mj

l′

l

=
logM j

l′ + log NW

Mj

l′

L− α− β

=
l′

L− α− β


 logM j

l′

l′
+

log NW

Mj

l′

l′




→ H(W)
E[|W |] = H(X), a.s. (A· 35)

for ∀i ∈ Z. Here, the convergence (A· 35) holds because
NW

Mj

l′
→ E[|W |] < ∞, a.s.,

logMj

l′
l′ → H(W), a.s., and α

and β are bounded and (A· 31) holds. (A· 35) means

lim sup
l→∞

logN i
l

l
� H(X), a.s. (A· 36)

Because lim supl→∞
logNi

l

l � H(X) a.s. from the
above discussion, then the code exists whose mean
codelength is less than or equall to H(X) [8], [21]. Pre-
cisely, we can construct a code whose codelength satis-
fies logNi

l

l + o(1) when l → ∞. How to construct such
code is shown in Sect. 4.2.

Here, let l(φn) be the codelength of a variable
length noiseless code {φn, φ

−1
n }. Then, we can find a

noiseless code {φn, φ
−1
n } satisfying

lim sup
n→∞

1
n
l(φn) � H(X), a.s. (A· 37)

from (A· 36). Oppositely, for a general source

l(φn) � − logPXn(xn)− log n− 2 log logn, a.s.

(A· 38)

is satisfied [2], [15]. Therefore we have†

lim inf
n→∞

1
n
l(φn) � H(X), a.s. (A· 39)

This also means that

lim inf
l→∞

logN i
l

l
� H(X) a.s. (A· 40)

because we can construct a code whose codelength
†If the code {φn, φ−1

n } satisfies (A· 37), then

lim
n→∞

1

n
l(φn) = H(X), a.s.

for ergodic word valued sources from (A· 39).
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l(φn) satisfies l(φn) =
logNi

n

n + o(1) when n → ∞ (See
Sect. 4.2).

We have therefore

lim
l→∞

logN i
l

l
→ H(X), a.s. (A· 41)

for ∀i ∈ Z from the equations (A· 36) and (A· 40), the
proof is complete. ✷
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