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PAPER

Properties of a Word-Valued Source with a Non-prefix-free Word
Set

Takashi ISHIDA†a), Masayuki GOTO††, Toshiyasu MATSUSHIMA†, Members,
and Shigeichi HIRASAWA†, Fellow

SUMMARY Recently, a word-valued source has been proposed as a
new class of information source models. A word-valued source is regarded
as a source with a probability distribution over a word set. Although a
word-valued source is a nonstationary source in general, it has been proved
that an entropy rate of the source exists and the Asymptotic Equipartition
Property (AEP) holds when the word set of the source is prefix-free. How-
ever, when the word set is not prefix-free (non-prefix-free), only an upper
bound on the entropy density rate for an i.i.d. word-valued source has been
derived so far. In this paper, we newly derive a lower bound on the entropy
density rate for an i.i.d. word-valued source with a finite non-prefix-free
word set. Then some numerical examples are given in order to investigate
the behavior of the bounds.
key words: word-valued source, word set, non-prefix-free, entropy rate,
entropy density rate, Asymptotic Equipartition Property (AEP)

1. Introduction

Recently, a word-valued source has been proposed as a new
class of information source models [14]. A word-valued
source is regarded as a source which has a probability dis-
tribution over a word set, where a word is defined as a finite
sequence over a finite alphabet. Data sequences to be com-
pressed are possibly emitted by word unit from the source,
so it is natural to assume that the source model has the prob-
ability distribution over the word set. Although a word-
valued source is a nonstationary source in general [14], it
was shown that an entropy rate of the source exists and that
the Asymptotic Equipartition Property (AEP) holds under
some assumptions [6], [14].

M. Nishiara and H. Morita [14] have studied an i.i.d.
word-valued source which is defined as a pair of an in-
dependently and identically distributed (i.i.d.) source with
a countable alphabet Y and a mapping function φ which
maps each element y ∈ Y to a word w over a finite alpha-
bet W. They have derived an upper bound on an entropy
density rate of an i.i.d. word-valued source. Furthermore,
they have shown that if φ is prefix-free, that is, any word
is not a prefix of other words, then the entropy rate is ob-
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tained by a simple expression and the AEP holds. M. Goto
et al. [6] generalized an i.i.d. word-valued source into an er-
godic word-valued source which is defined by a pair of an
ergodic source with a countable alphabet and a mapping φ
from each symbol to a word. They have derived an entropy
rate of the source when φ is prefix-free. Moreover, the recur-
rence time theorem and the universality of LZ77 code [16]
for the source were shown. T. Ishida et al. [9], [10] consid-
ered the source which emits data sequences by block unit
(the block stationary source), and discussed the universality
of LZ78 code [17] and Bayes code [12].

In these arguments, prefix-free property plays an im-
portant role to derive an entropy rate of the source. This
property makes analysis easy for the word-valued sources.
However, it is also important to analyze the non-prefix-free
cases to reflect more of the probability structure of the actual
data sequences. For example, Japanese sentences may be re-
garded as the sequence which is emitted from a word-valued
source with non-prefix-free word set.

A word-valued source has been proved to be equiva-
lent to the recurrent source [14]. For the non-prefix-free
cases (non-prefix-free word-valued source), it is not gener-
ally clear whether the source has an entropy rate. Only an
upper bound of the entropy rate has been derived in [14] un-
til now. There still remain many issues which are not yet
investigated about the property of an entropy rate for the
non-prefix-free word-valued source.

The purpose of our study is to clarify the property of an
entropy rate of a non-prefix-free word-valued source. As the
first step of the study, in this paper, we derive a lower bound
on the entropy density rate for the non-prefix-free case theo-
retically, and then we show some numerical experiments in
order to verify the bound.

This paper is organized as follows: Sect. 2 defines the
i.i.d. word-valued source and reviews the previous studies.
In Sect. 3, we describe the property of the non-prefix-free
word-valued source. Section 4 provides a lower bound on an
entropy density rate of the source, and we present some nu-
merical experiments in Sect. 5. Finally, concluding remarks
are given in Sect. 6.

2. Word-Valued Source

2.1 Definition of an i.i.d. Word-Valued Source

At first, the definition of an i.i.d. word-valued source by
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Nishiara and Morita is described below.

Definition 1: (i.i.d. word-valued source [14]) Let Y =
Y1Y2Y3 · · · be an i.i.d. source with a countable alphabet Y.
Here, Yi is a random variable. Let X be a finite alphabet
with ||X|| symbols† and X∗ be a set of all finite sequences
over X. That is, X∗ = ∪∞i=0Xi. Here, Xi is a product space
of X, i.e., Xi = X1 × X2 · · · Xi︸������������︷︷������������︸

i

. A mapping φ is given by

φ : Y → X∗. φ(Y) is the sequence of the random variable X
obtained by a concatenation of the sequences φ(Y1), φ(Y2),
φ(Y3), · · · for Y = Y1Y2Y3 · · · . Then an i.i.d. word-valued
source X = X1X2X3 · · · is defined as follows:

X
def
= φ(Y) = X1X2X3 · · · . (1)

�

Goto et al. [6] have extended Y to an ergodic source.
Such a case is called an ergodic word-valued source.

The mapping φ : Y → X∗ is said to be prefix-free if
φ(y) is not a prefix of φ(y′) for any y � y′.

Next, we define a word and a word set as follows:

Definition 2: (Word and Word set) Let W = φ(Y) be a
random variable over a countable alphabet W ⊆ X∗. We
denote a sequence of W1 = φ(Y1), W2 = φ(Y2), W3 = φ(Y3)
· · · by W =W1W2W3 · · · . Let w = φ(y) ∈ W be the realiza-
tion value of W for y ∈ Y. We call w a word, andW a word
set. And the word setW is said to be a prefix-free word set
if and only if φ is prefix-free. On the contrary, if φ is not
prefix-free, thenW is said to be a non-prefix-free word set.

�

For each finite number n = 1, 2, · · · , we denote the se-
quence of X with length n by Xn = X1X2X3 · · · Xn, and its
realization value by xn = x1x2x3 · · · xn respectively. Simi-
larly, for each finite number m = 1, 2, · · · , we use the no-
tation such that Ym = Y1Y2Y3 · · ·Ym, ym = y1y2y3 · · · ym,
Wm = W1W2W3 · · ·Wm, and wm = w1w2w3 · · ·wm. Fur-
thermore, for each finite number m = 1, 2, · · · , we denote
by φ(Ym) a sequence of X obtained by a concatenation of
W1 = φ(Y1), W2 = φ(Y2), · · · , Wm = φ(Ym) for Ym =

Y1Y2 · · ·Ym.
Word-valued source emits a sequence of words wm =

φ(y1)φ(y2) · · ·φ(ym). A sequence ym can not be observed.
We can only recognize a sequence xn which is obtained by
concatenation of words w = φ(y). That is, xn = φ(ym) and n
= |φ(y1)| + |φ(y2)| + · · ·+ |φ(ym)| = |w1| + |w2| + · · ·+ |wm| for
given m††.

Example 1 (word and word set): Let Y be Y = {1, 2, 3, 4}
and X be X = {0, 1}. And mapping φ : Y → W ⊂ X∗ is
given by φ(1) = 0, φ(2) = 01, φ(3) = 101, φ(4) = 111. Con-
sidering y4 = y1y2y3y4 = 2431, the words are w1 = φ(y1) =
01, w2 = φ(y2) = 111 and so on. In this example, the
word setW = {0, 01, 101, 111} corresponds to a non-prefix-
free case. Word-valued source emits the sequence word by
word, that is, w4 = w1w2w3w4 = φ(y1)φ(y2)φ(y3)φ(y4) =
01 111 101 0. However we can only observe the sequence

x9 which is obtained by concatenating the words, that is,
x9 = φ(y4) = 011111010. We never see the sequence y4.
Here n = |w1| + |w2| + |w3| + |w4| = 2 + 3 + 3 + 1 = 9. �

Hereafter, we call wm (in some cases also ym) “a word
sequence,” and xn “a symbol sequence” respectively.

2.2 Probability Distribution of an i.i.d. Word-Valued
Source

Let Yi = Y1 ×Y2 × · · ·Yi be a product space of Y. And let
Y∞ = Y1×Y2×· · · be a sample space with each elementary
event y∞ = y1y2 · · · ∈ Y∞. Random variables Ym and Wm

are defined as the functions on Y∞, Ym : Y∞ → Ym and
Wm : Y∞ → Wm†††. Then, the probability distributions of
Ym and Wm are defined as follows:

PYm (ym)
def
= Pr ({y∞ ∈ Y∞|Ym(y∞) = ym}) , (2)

PWm (wm)
def
= Pr ({y∞ ∈ Y∞|Wm(y∞) = wm}) . (3)

Throughout this paper, {A} denotes a set of elements satis-
fying the condition A.

Especially, if the mapping φ : Y → X∗ is one-to-one,
then

PWm (wm) = PYm (ym), (4)

holds for wm = φ(y1)φ(y2) · · ·φ(ym). If m = 1, we simply
use the notation PY (y) = PY1 (y1) and PW (w) = PW1 (w1).

Let π be the prefix operator such that

ymπ = ym−1, (5)

where y0 means the null sequence λ with length 0. And let
π{xn} be the set of all prefixes of the sequence xn including
λ and xn itself. Denoting the set of all finite sequences of y
byY∗ = ∪∞i=0Yi, we define Γφ(xn) ⊂ Y∗ as the set of y∗ such
that xn is a prefix of φ(y∗) but not so of φ(y∗π):

Γφ(xn)
def
=

{y∗ ∈ Y∗| (xn ∈ π{φ(y∗)}) ∧ (xn � π{φ(y∗π)})} . (6)

Let Y∗ be a random variable over Y∗, then, the probability
distribution of Xn is given by

PXn (xn)
def
= Pr({y∞ ∈ Y∞|Y∗(y∞) = y∗ ∈ Γφ(xn)})
=

∑
y∗∈Γφ(xn)

PY∗ (y
∗). (7)

When n = 1, we simply use the notation PX(x) = PX1 (x1).

†||A|| means a cardinality of a setA.
††|φ(y)| (= |w|) means the length of sequence φ(y) (= w).
†††More accurately, Ym and Wm should be written as Ym(y∞) and

Wm(y∞) respectively. However, if there is no likelihood of confu-
sion, we adopt the notations omitting “(y∞)” for brevity. The same
applies to Xn.
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2.3 Entropy Rate of a Word-Valued Source

An entropy density rate is defined by − 1
n log PXn (Xn) in [7].

If there exists a limit of an expectation of the entropy density
rate for X;

H(X) = lim
n→∞ EPXn

[
−1

n
log PXn (Xn)

]
, (8)

then H(X) is called an entropy rate of the word-valued
source X [6], [14]. Here, EP[·] means an expectation over
the probability distribution P. We assume the base of loga-
rithm is 2 throughout this paper.

Let H(Y) and H(W) be the entropy of i.i.d. sources Y
and W respectively, which are given by

H(Y) = −
∑
y∈Y

PY (y) log PY (y), (9)

and

H(W) = −
∑
w∈W

PW (w) log PW (w). (10)

If the mapping φ : Y →W is one-to-one, then H(Y) =
H(W) holds. An expected word length E[|W |] is given by

E[|W |] =
∑
w∈W
|w| · PW (w). (11)

Nishiara and Morita [14] have shown an entropy rate
and the AEP for an i.i.d. word-valued source.

Lemma 1: (Entropy rate and the AEP of an i.i.d. word-
valued source [14]) Let Y be an i.i.d. source with countable
alphabet Y. When X = φ(Y), H(Y) < ∞, and E[|W |] < ∞,
then we have following formulas†.

lim sup
n→∞

EPXn

[
−1

n
log PXn (Xn)

]
≤ H(Y)

E[|W |] , (12)

and

lim sup
n→∞

[
−1

n
log PXn (Xn)

]
≤ H(Y)

E[|W |] , a.s. (13)

Furthermore, if φ is prefix-free, then

H(X) =
H(Y)

E[|W |] , (14)

and

lim
n→∞

[
−1

n
log PXn (Xn)

]
=

H(Y)
E[|W |] , a.s. (15)

hold. �

In previous studies, the word-valued source have been
discussed mainly in the case that the mapping φ : Y →W
is prefix-free, i.e., W is a prefix-free word set. When φ
is prefix-free, the existence of an entropy rate and the AEP

of the source have been already proved for an i.i.d. word-
valued source (Lemma 1 [14]) and for an ergodic word-
valued source (Goto et al. [6]). It has also been proved
that LZ77 code [16] is universal for an ergodic word-valued
source [6], and that LZ78 code [17] is universal for an er-
godic word-valued source [9], [10]. In [9], it was shown
that the Bayes code [12] can be constructed for a block-wise
word-valued source which has the word set with unknown
fixed word length h ≥ 1.

3. Non-prefix-free Word-Valued Source

Prefix-free property plays an important role in analyses of
the word-valued sources. In order to derive an entropy
rate, the property makes analyses easy for the word-valued
sources.

When φ is prefix-free, the mapping from the word se-
quencesWm to the symbol sequences X∗ becomes one-to-
one. From an observed symbol sequence xn, if we know the
word setW, we can uniquely determine a certain word se-
quence wm which is actually emitted from the source when
n =

∑m
i=1 |wi|. That is, we can see that where the unob-

served “gaps” between each word in the symbol sequence
xn are. By determining where the gaps are in given symbol
sequence xn, we can specify one certain word sequence wm.

When φ is not prefix-free, on the other hand, the map-
ping from the word sequencesW∗ to the symbol sequences
Xn is generally a many-to-one mapping.

Example 2 (many-to-one mapping ofW∗ to Xn):
Figure 1 shows an example of the relation W∗ and Xn. It
is found that some word sequences w∗ are mapped to one
symbol sequence x9 = 001111000. In this case, the ele-
ments of Γφ(x9) = Γφ(001111000) are shown in Table 1.
Here, ||Γφ(001111000)|| = 21. And then, PXn (001111000)
is obtained by the summation of PY∗ (y∗) for all y∗ ∈
Γφ(001111000). �

Generally, the appearance probability PXn (xn) has a

W∗ Xn

0 0 1 1 1 1 0 0 0

.

.

.

.

.

.

xn ∈ Xn.
.
.

.

.

. W = {0, 00, 01, 11, 111},
00 | 11 | 11 | 0 | 00

0 | 01 | 111 | 00 | 0

0 | 0 | 11 | 11 | 0 | 00

“ | ” are gaps between words.

w∗ ∈ W∗

(n = 9)

Fig. 1 Mapping fromW∗ to Xn in the case that φ is not prefix-free.

†We use the notation “ fn ≤ gn, a.s. when n→ ∞” to represent
“Pr

{
fn > gn, infinitely often n

}
= 0.”
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Table 1 Elements of Γφ(001111000) in Fig. 1.

0|0|11|11|0|0|0 00|11|11|00|0
0|0|11|11|0|0|00 00|11|11|00|00
0|0|11|11|0|0|01 00|11|11|00|01
0|0|11|11|0|00 0|01|111|0|0|0
0|0|11|11|00|0 0|01|111|0|0|00
0|0|11|11|00|00 0|01|111|0|0|01
0|0|11|11|00|01 0|01|111|0|00
00|11|11|0|0|0 0|01|111|00|0
00|11|11|0|0|00 0|01|111|00|00
00|11|11|0|0|01 0|01|111|00|01
00|11|11|0|00

complicated structure depending on the mapping fromW∗
toXn. This is one of the reasons why the analysis of the non-
prefix-free cases is difficult. If the word-valued source has
the non-prefix-free mapping, then we call it a non-prefix-
free word-valued source.

Nishiara and Morita [14] have stated that the
word-valued source is equivalent to recurrent irreducible
countable-states source with a fixed initial state and that it
is not stationary in general. No explicit single letter expres-
sion of the entropy rate for the model is known [4]. In [14],
the upper bound on the entropy density rate (Eq. (12)) has
been shown. However, there is no argument about the be-
havior of the actual value of the entropy density rate or its
upper bound. As to a lower bound, only the trivial bound,
that is H(X) ≥ 0, has been known until now.

4. Main Results

We newly derive a lower bound on an entropy density rate
of the non-prefix-free word-valued source for the purpose
of clarification of the source. In our analysis, we restrict the
case of an i.i.d. word-valued source with a finite word set in
order to obtain the bound.

Theorem 1 shows a lower bound on an entropy density
rate for a non-prefix-free i.i.d. word-valued source with a
finite word set. At first, we give a definition of the model for
the theorem.

4.1 Model

Definition 3: (Non-prefix-free i.i.d. word-valued source
with a finite word set) Let Y be an i.i.d. source with a finite
alphabet Y, and X be a finite alphabet with ||X|| symbols.
Let φ be a one-to-one mapping φ : Y → ∪K

s=1Xs (= W),
where K is the maximum length of the words. Then a non-
prefix-free i.i.d. word-valued source with a finite word set is
given by X = φ(Y). �

Here, φ is restricted as one-to-one mapping. This re-
striction is given in order to simplify the relation between
PY (y) and PW (w). Even if φ is one-to-one, the mapping from
W∗ to Xn is generally a many-to-one mapping becauseW
is not prefix-free word set. As mentioned in section 3, the
essence of the problem of the non-prefix-free word-valued
source is in the many-to-one mapping fromW∗ to Xn.

K

0 1

0 01 1

W = {0, 1, 00, 01, 10, 11, 000, · · · , 11 · · · 1︸��︷︷��︸
K

}

||W|| = ∑K
s=1 2s = 2(2K − 1)

X = {0, 1}, ||X|| = 2

Fig. 2 An example of a word tree.

Since φ is a one-to-one mapping, PY (y) = PW (w) when
w = φ(y) and H(W) = H(Y) hold. An entropy rate of W is
given by

H(W) = −
∑
w∈W

PW (w) log PW (w). (16)

The word set W defined above is represented by a
complete ||X||-ary tree called a word tree, where the depths
of all leaf nodes are K (Fig. 2). Each branch in the word tree
is labeled by a symbol x ∈ X. Each of the nodes represents a
word w ∈ W which corresponds to a sequence of the labels
on the path from the root to each node.

We can construct the various models depending on the
probability distribution PW (w) over a word set W. It also
happens that the model described above becomes equivalent
to the prefix-free case by setting PW (w) = 0 to some words
appropriately. However, in these arguments, we consider
only the non-prefix-free cases except the prefix-free cases. If
the word set is prefix-free, we need not consider the bounds
on the entropy rate because H(X) is obtained by Lemma 1.

From the same argument as [14], it can be easily shown
that the i.i.d. word-valued source with a finite non-prefix-
free word set defined above is equivalent to recurrent irre-
ducible finite-states source with a fixed initial state. The en-
tropy rate of the source also has not been shown until now,
and only the upper bound was given by [14].

4.2 Main Theorem

Now we show a lower bound on an entropy density rate of
the non-prefix-free i.i.d. word-valued source with a finite
word set.

Theorem 1: (The lower bound on an entropy density rate
of a non-prefix-free i.i.d. word-valued source with a finite
word set) For a non-prefix-free i.i.d. word-valued source
with a finite word set with the maximum word length K,

lim inf
n→∞

[
−1

n
log PXn (Xn)

]
≥ H(Y)

E[|W |] −
H(S )

E[|W |] , a.s.

(17)
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holds. Here H(S ) and PS (s) are given by

H(S ) = −
K∑

s=1

PS (s) log PS (s), (18)

PS (s) =
∑

{w∈W:|w|=s}
PW (w), (s ≤ K), (19)

where S is a random variable representing the word length
s = |w|, and PS (s) is a probability distribution of S .

Proof: See Appendix. �

From Lemma 1 and Theorem 1 we obtain the following
results.

Corollary 1: If there exists H(X) of an i.i.d. non-prefix-
free word-valued source with a finite word set,

H(W)
E[|W |] −

H(S )
E[|W |] ≤ H(X) ≤ H(W)

E[|W |] , (20)

holds.

Proof: From the Fatou’s Lemma [3], we have

EPXn

[
lim inf

n→∞

[
−1

n
log PXn (Xn)

]]

≤ lim inf
n→∞ EPXn

[
−1

n
log PXn (Xn)

]
. (21)

Here, if there exists H(X),

lim inf
n→∞ EPXn

[
−1

n
log PXn (Xn)

]
= H(X), (22)

is satisfied. By substituting them into Lemma 1 and Theo-
rem 1, we have

H(Y)
E[|W |] −

H(S )
E[|W |] ≤ H(X) ≤ H(Y)

E[|W |] . (23)

Because φ is a one-to-one mapping, we can rewrite H(Y) by
H(W). Then Corollary 1 is obtained. �

Remark 1: From Eq. (20), it is found that the difference
between the upper bound and the lower bound is given by
H(S )/E[|W |]. The source with the smaller value of H(S ) or
the larger value of E[|W |] has the smaller difference. �

Remark 2: Because the joint probability of W and S , de-
noting PWS (w, s), satisfies

PWS (w, s) =

{
PW (w) s = |w|,

0 otherwise,
(24)

we have the following equation:

K∑
s=1

PWS (w, s) log PWS (w, s) = PW (w) log PW (w). (25)

Denoting the conditional probability and the condi-
tional entropy of W given S by PW |S (w|s) and H(W |S ) re-
spectively, then,

H(W |S ) = −
K∑

s=1

∑
w∈W

PWS (w, s) log PW |S (w|s)

= −
K∑

s=1

∑
w∈W

PWS (w, s) log
PWS (w, s)

PS (s)

= −
∑
w∈W

K∑
s=1

PWS (w, s) log PWS (w, s)

+

K∑
s=1

∑
w∈W

PWS (w, s) log PS (s)

= −
∑
w∈W

PW (w) log PW (w) +
K∑

s=1

PS (s) log PS (s)

= H(W) − H(S ) (26)

holds. From Eq. (26), we can rewrite the lower bound (left
hand side of Eq. (20)) as

H(W)
E[|W |] −

H(S )
E[|W |] =

H(W |S )
E[|W |] . (27)

It is found that the value of the lower bound depends on the
dispersion in the distribution PW (w) when PS (s) was given.

�

Remark 3: The trivial bounds on the entropy rate of H(X)
is given by

0 ≤ H(X) ≤ log ||X||. (28)

The lower bound in Eq. (20) always satisfies

H(W)
E[|W |] −

H(S )
E[|W |] =

H(W |S )
E[|W |] ≥ 0. (29)

On the contrary, the upper bound in Eq. (20) does not
always satisfy

H(W)
E[|W |] ≤ log ||X||. (30)

When the length of the words w ∈ W satisfies Kraft’s in-
equality, namely when∑

{w∈W:PW (w)>0}
||X||−|w| ≤ 1, (31)

holds, the expected word length is lower-bounded by the
entropy. That is,

−
∑
w∈W

PW (w) log||X|| PW (w) =
H(W)

log ||X||
≤

∑
w∈W

PW (w) · |w| = E[|W |], (32)

is satisfied, and then, Eq. (30) is ensured. However, in the
non-prefix-free cases, the Kraft’s inequality does not always
hold.

Therefore the upper bound on an entropy rate of a non-
prefix-free word-valued source is given by

min

{
H(W)
E[|W |] , log ||X||

}
. (33)

�
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Remark 4: If H(S ) = H(W), the left hand side of Eq. (20)
is equal to 0, so the lower bound becomes trivial. Obviously,
this situation corresponds to the case that the lengths of all
words inW are different from one another. We notice that
this may also happen when the word set is prefix-free. It
is because that in order to derive a lower bound on the en-
tropy rate of a non-prefix-free word-valued source, we have
directed our attention to only the length of words. However,
when the word set is prefix-free, we can use Lemma 1 for
verifying the entropy rate. Our theorem should be applied
only for the non-prefix-free word-valued source. �

Remark 5: When H(S ) = 0, the lower bound completely
corresponds to the upper bound. If all of the words have
the same length h, then H(S ) = 0 holds and H(X) =
H(W)/E[|W |] = H(W)/h. This result was referred in [9]
and it is the special case when φ is prefix-free. �

5. Numerical Experiments

In this section, focusing only upon the non-prefix-free word-
valued source, some numerical experiments are shown in
order to investigate the behavior of the value of the entropy
density rate and the bounds.

5.1 Conditions of Experiments

We set the word setW to be the finite non-prefix-free word
set described in Definition 3 in the case of X = {0, 1} and
K = 5, that is,

W = {0, 1, 00, 01, 10, 11, · · · , 11110, 11111},
||W|| = 2 + 4 + 8 + 16 + 32 = 62.

We compute the average of the value of an entropy den-
sity rate − 1

n log PXn (xn) of some sequences with sufficiently
large n actually emitted from the source. Then it is com-
pared with the value of a lower bound (calculated by left
hand side (l.h.s.) of Eq. (20)) and an upper bound (calcu-
lated by right hand side (r.h.s.) of Eq. (20)).

The property of word-valued source models are depen-
dent on the probability distributions PW (w) overW. In this
experiment, we assume P(w) > 0(� 0) for all w ∈ W. Here,
the word setW is surely non-prefix-free.

5.2 Experiment I: Convergence of the Entropy Density
Rate

It has not been clarified whether the entropy rate of a non-
prefix-free word-valued source exists or not. At first we in-
vestigate the convergence of the entropy density rate of the
non-prefix-free word-valued source.

We fix one specific non-prefix-free word-valued source
by giving the randomly generated probability distribution
PW (w) on the word setW. Then we calculate the entropy
density rate for the 200 sequences with length of n = 40000
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Variance

Fig. 3 The convergence process of entropy density rate.

Table 2 The conditions of PS (s) of word-valued source.

PS (1) PS (2) PS (3) PS (4) PS (5)
(i) 0.01 0.04 0.05 0.10 0.80
(ii) 0.50 0.20 0.15 0.10 0.05
(iii) 0.80 0.10 0.05 0.04 0.01

H(S ) E[|W |]
(i) 1.06 4.64
(ii) 1.92 2.00
(iii) 1.06 1.36

actually emitted from the source. Figure 3 shows the conver-
gence process of the average (solid line) and variance (bro-
ken line) of the entropy density rate.

Figure 3 shows that the average of the entropy density
rate seems to converge to a constant value as n becomes
large, and it may be expected that the entropy rate exists also
for the non-prefix-free word-valued source. Furthermore,
the variance appears to approach 0 as n becomes large. It
is also expected that the AEP holds. Figure 3 is the result
of one specific model, however, the similar results were ob-
tained for some other models generated by the same method.

We assume that the entropy rate of the non-prefix-free
word-valued source exists in the following experiments. For
each source, we calculate the average of the entropy density
rate of 200 sequences with length of 40000, and we consider
it as the estimator of the entropy rate of the source, denoted
by Ĥ(X).

5.3 Experiment II: The Behavior of Ĥ(X) and Its Bounds

As in Experiment I, generating the probability distribution
PW (w) randomly, we compute the Ĥ(X) and its bounds, and
then compare them.

In Experiment II, we assume that PS (s) is fixed and
PW |S (w|s) is randomly given. PW (w) is obtained by the prod-
uct of PS (s) and PW |S (w|s). We consider three cases of PS (s)
(s = 1, 2, · · · , 5) as shown in Table 2. 200 word-valued
source models are generated randomly in respective cases of
(i)–(iii). We calculate Ĥ(X) and its bounds for each model.

Figures 4, 5 and 6 show the calculation results of Ĥ(X)
(denoted by “+” as each randomly generated model), the
upper bound (denoted by UB) and the lower bound (denoted
by LB) under the cases (i), (ii) and (iii). The horizontal axis
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Fig. 4 The result of case (i) in Experiment II.
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Fig. 5 The result of case (ii) in Experiment II.
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Fig. 6 The result of case (iii) in Experiment II.

represents H(W). Since PS (s) is fixed in each case, H(S )
and E[|W |] are constant. Therefore, the upper bound and
the lower bound are given as a straight line with the same
gradient in the figures.

From the results, at first, we can see the large differ-
ence in the range of value which H(W) takes depending

on PS (s). Deviation of the probability distribution PW (w)
becomes large by giving small probability to words with
long length, and giving large probability to words with short
length because the number of longer words is more than that
of shorter ones. And then, H(W) tends to take smaller val-
ues. It corresponds to the case (iii).

In case (i) and (ii), it is found that H(W) takes relatively
larger values, and both Ĥ(X) and the lower bound approach
very close to 1 which is the trivial upper bound (Figs. 4 and
5). Trivial lower bound (H(X) ≥ 0) do not have a meaning
at all.

In case (iii), in the region where H(W) is smaller, the
lower bound is far from 1 and Ĥ(X) tends to take the value
in the middle of them (Fig. 6).

From above results, although they are still qualitative,
we may say that there is a meaning in the proposed lower
bound as the first step to discuss the entropy rate of a non-
prefix-free word-valued source.

More detailed numerical experiments under various
conditions including the case with PW (w) = 0 for some
w ∈ W are shown in [11].

Remark 6: Since we assume here that P(w) > 0 for all
w ∈ W, Kraft’s inequality (Eq. (31)) does not hold. As
stated in Remark 3, therefore, it may happen that the value
of the upper bound becomes larger than the trivial upper
bound log ||X|| = 1 here. Figure 4, 5 and 6 show that the
upper bounds are larger than the trivial bound in all models
in this experiment. This is because H(W) probably tends to
take a larger value than E[|W |] under the assumption. To the
contrary, if PW (w) = 0 for some words w, H(W) tends to
get a smaller value. At this time, the upper bound becomes
smaller than the trivial bound, and it might be expected that
there are many cases that the upper bound is effective. �

6. Concluding Remarks

In this paper, we have newly derived a lower bound on an
entropy density rate of a non-prefix-free i.i.d. word-valued
source with a finite word set. The lower bound satisfies
H(Y)

E[|W |] − H(S )
E[|W |] ≥ 0. Then we have investigated the behavior

of the entropy density rate and its bounds for some case by
numerical computation. From the results, we have obtained
a suggestion about the effectiveness of the lower bound. Al-
though only qualitative evaluation has been provided this
time, we must clarify the effectiveness theoretically in fu-
ture.

As a future study, we try to derive a tighter bound.
Moreover, the existence of the entropy rate and the AEP of a
non-prefix-free word-valued source should be theoretically
investigated. An analysis of the bounds on the entropy rate
for an ergodic word-valued source with a non-prefix-free
word set is also a future work. Up to now, there is only the
discussion that Lemma 1 (upper bound) can be extended to
the case where Y is an ergodic source by the present authors
[11].
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Appendix: Proof of Theorem 1

First, we give the outline of the proof by asymptotical ar-
guments in order to clearly describe the abstract of deriving
the lower bound. Next, some definitions and lemmas for the
proof of Theorem 1 are prepared. Finally we show the com-
plete proof with strict and careful arguments.

A.1 Outline of the Proof

We also use Nm and Mn as [6], [14] for an i.i.d. source Y.

Nm
def
=

m∑
i=1

|φ(Yi)|, (A· 1)

Mn
def
= min

m≥1
{m|Nm ≥ n}. (A· 2)

Here, Nm means the total length of φ(Ym), and Mn means
the minimum length of Ym such that Nm ≥ n. Both Nm and
Mn are random variables. The following lemmas have been
proved.

Lemma 2 (Nishiara and Morita [14]): For all sample se-
quences,

lim
n→∞Mn = ∞, (A· 3)

holds. �

Lemma 3 (Goto et al. [6]): For an i.i.d. source Y†,

lim
n→∞

Mn

n
=

1
E[|φ(Y)|] , a.s. (A· 4)

holds. �

In order to derive a lower bound on entropy density
rate of the non-prefix-free word-valued source, we need to
evaluate the appearance probability of a symbol sequence
xn. Considering the property of AEP [15] on the measure
of Y, we find that actually occurring ym has asymptotically
equal probability when m → ∞. Therefore, we can ob-
tain PXn (xn) by counting up the total number of the word
sequences w∗ ∈ W∗ (i.e., y∗ ∈ Y∗) mapped to the same sym-
bol sequence xn, which is equal to the cardinality of Γφ(xn).
However, as we mentioned in Sect. 3, PXn (xn) has a com-
plicated structure and it depends on a many-to-one mapping
from W∗ to Xn. In the outline of the proof, we are con-
cerned only with the typical sequence [8] on Y because non
typical y∗ does not occur when m→ ∞.

Denoting pmax(xn) as the maximum probability of yMn

such as yMn ∈ Γφ(xn) and typical, PY Mn (yMn ) ≤ pmax(xn)
holds for all yMn ∈ Γφ(xn) when n is sufficiently large (i.e.,
Mn is sufficiently large by Lemma 2). We can rewrite Eq. (7)
as

†In [6], Goto et al. have shown this lemma in the case that Y is
an ergodic source.
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PXn (Xn) =
∑

yMn∈Γφ(Xn)

PY Mn (yMn )

≤ pmax(Xn) · ∥∥∥Γφ(Xn)
∥∥∥ , a.s. (A· 5)

when n→ ∞.
Then, we obtain

lim inf
n→∞

[
−1

n
log PXn (Xn)

]

≥ lim inf
n→∞

[
−1

n
log pmax(Xn)

]

+ lim inf
n→∞

[
−1

n
log

∥∥∥Γφ(Xn)
∥∥∥
]
, a.s. (A· 6)

In Eq. (A· 6), if we can show that the first term of the
right hand side (r.h.s.) is equal to H(Y)

E[|W |] , and that the second

term corresponds to − H(S )
E[|W |] , then the proof of the theorem is

concluded.
To evaluate the first term, we can use the AEP [15]

of sequence Ym. Because we now consider the typical se-
quence on the measure of Y and Mn → ∞ when n→ ∞,

lim
n→∞

[
− 1

Mn
log pmax(Xn)

]
= H(Y), a.s. (A· 7)

holds. From Lemma 3, replacing φ(Y) by W here, we have

lim inf
n→∞

[
−1

n
log pmax(Xn)

]

= lim
n→∞

[
−Mn

n
1

Mn
log pmax(Xn)

]

=
H(Y)

E[|W |] , a.s. (A· 8)

Next we consider the second term of the r.h.s. of
Eq. (A· 6). If we can count up the number of word sequences
mapped to the same sequence Xn, the second term can be
evaluated.

We introduce the idea such that the mapping becomes
one-to-one by assuming the gaps between words in xn are
fixed. Determining a certain word sequence w∗ from a
given symbol sequence xn is equivalent to separating xn into
words. Each different word sequence with the same separa-
tion pattern of words is never mapped to the same symbol
sequence xn. We can evaluate the number of the word se-
quences mapped to the same symbol sequence xn by count-
ing up the number of separation patterns of xn.

Let N(w|Wm) be the number of the word w ∈ W which
appears in the sequence Wm. We define Lm(s) as the occur-
rence number of the word w with length s (s = 1, 2, · · · ,K)
in the word sequence Wm. And PS (s) is defined as the prob-
ability distribution of s. That is,

Lm(s)
def
=

∑
w: |w|=s

N(w|Wm), (A· 9)

PS (s)
def
=

∑
w: |w|=s

PW (w), (A· 10)

where S denotes the random variable of s.
We consider ym = y1y2 · · · ym and y′m =

y′1y
′
2 · · · y′m, and also wm = φ(y1)φ(y2) · · ·φ(ym), w′m =

φ(y′1)φ(y′2) · · ·φ(y′m), xn = φ(ym) and x′n = φ(y′m). When
m and Lm(s) are fixed and n =

∑m
i=1 |Wi| holds, the following

facts are indicated:

1. If wm � w′m and |wi| = |w′i | (i = 1, 2, · · · ,m), then
xn � x′n surely holds. That is, each different wm with
the same separation pattern is certainly mapped to the
different xn.

2. Even if there exists i (i = 1, 2, · · · ,m) such that |wi| �
|w′i |, then, of course wm � w′m, there exist the case that
xn = x′n. That is, it may happen that each wm with
different separation pattern is mapped to the same xn.

It is found that, therefore, the number of Wm which
mapped to a certain Xn is bounded from above by the num-
ber of the total separation pattern of Xn into words Vm;

Vm
def
=

m!
Lm(1)!Lm(2)! · · · Lm(K)!

. (A· 11)

Vm is also a random variable and is equal to the total number
of arrangement of the m words which contains Lm(s) words
with length s each.

When n is sufficiently large, Mn ∼ n
E[|W |] holds† from

Lemma 3, that is, Xn includes almost n
E[|W |] words. Paying

attention to above arguments, although Mn is a random vari-
able, we can obtain∥∥∥Γφ(Xn)

∥∥∥ ≤ VMn , a.s.

=
Mn!

LMn (1)!LMn (2)! · · · LMn (K)!
, (A· 12)

when n→ ∞.
From the law of large number [5] and the definition of

Lm(s),

lim
m→∞

Lm(s)
m
= PS (s), a.s., (A· 13)

holds for every s (s = 1, 2, · · · ,K). This means that the
word sequences with length Mn includes LMn (s) ∼ MnPS (s)
words of each length s when n is sufficiently large. From
Mn ∼ n

E[|W |] and LMn (s) ∼ MnPS (s), we can rewrite
Eq. (A· 12) using Stirling’s formula [5], log n! ∼ n log n, as

−1
n

log
∥∥∥Γφ(Xn)

∥∥∥
≥ −1

n
log

Mn!∏K
s=1 (MnPS (s))!

∼ −Mn

n

⎛⎜⎜⎜⎜⎜⎝−
K∑

s=1

PS (s) log PS (s)

⎞⎟⎟⎟⎟⎟⎠
∼ − H(S )

E[|W |] , (A· 14)

when n is sufficiently large. Here,

†Here we use the notation “F(n) ∼ G(n)” to represent
“limn→∞ F(n)

G(n) = 1.”
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H(S ) = −
K∑

s=1

PS (s) log PS (s). (A· 15)

The lower bound on the entropy rate is provided by
assigning Eqs. (A· 8) and (A· 14) for Eq. (A· 6).

lim inf
n→∞

[
−1

n
log PXn (Xn)

]
≥ H(Y)

E[|W |] −
H(S )

E[|W |]) , a.s.

(A· 16)

We present the strict proof of Theorem 1 as follows. At
first, in next section, we give some definitions and lemmas
in (1)–(4) for the preparation for the complete proof.

A.2 Preparation

(1) Typical sequence

As mentioned in the outline of the proof, N(w|Wm) denotes
the number of the word w ∈ W which appears in the se-
quence Wm. Because Wm is i.i.d. process and W is finite
in Definition 3, we have the following lemma by the law of
iterated logarithm [5].

Lemma 4:

PY (y) − δm,w < N(w|Wm)
m

< PY (y) + δm,w, a.s.

(A· 17)

when m→ ∞. Here,

δm,w = O

⎛⎜⎜⎜⎜⎜⎝
√

log log m
m

⎞⎟⎟⎟⎟⎟⎠ . (A· 18)

�

We define E(m)
Y ⊂ Y∞ as

E(m)
Y

def
=

{
y∞ ∈ Y∞

∣∣∣ ∣∣∣∣∣N(w|Wm)
m

− PW (w)
∣∣∣∣∣ < δm,w}.

(A· 19)

E(m)
Y represents the event such that Ym(y∞) = ym is a typical

sequence with length m on the measure of Y. Furthermore,
EY is defined as

EY
def
=

∞⋃
k=1

∞⋂
m=k

E(m)
Y , (A· 20)

then Lemma 4 suggests

Pr(EY ) = 1. (A· 21)

(2) The AEP of Ym

We consider the sequence Ym from an i.i.d. source with
probability distribution PY (y) (y ∈ Y). For an arbitrary
ε > 0, we define

p(m,ε)
def
= 2−m(H(Y)−ε), (A· 22)

p(m,ε)
def
= 2−m(H(Y)+ε), (A· 23)

Then we have the following lemma.

Lemma 5: For arbitrary small ε > 0

p(Mn,ε) < PY Mn (Y Mn ) < p(Mn,ε), a.s. (A· 24)

holds on EY when n→ ∞.

Proof: From the definition of EY ,

lim
m→∞

N(φ(y)|Wm)
m

= PY (y), (A· 25)

holds for any y∞ ∈ EY where we notice that φ is one-to-one.
Then, we obtain

lim
m→∞−

1
m

log PYm (Ym)

= lim
m→∞−

1
m

log
∏
y∈Y

PY (y)N(φ(y)|Wm)

= lim
m→∞

⎡⎢⎢⎢⎢⎢⎢⎢⎣−
∑
y∈Y

N(φ(y)|Wm)
m

log PY (y)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= H(Y). (A· 26)

Replacing m by Mn on Eq. (A· 26), we have

lim
n→∞−

1
Mn

log PY Mn (Y Mn ) = H(Y), a.s. (A· 27)

because Mn → ∞ as n→ ∞ holds by Lemma 2. Eq. (A· 27)
implies Eq. (A· 24). �

(3) Number of the words included in Xn

Here, we investigate the asymptotic property of Mn defined
by Eq. (A· 2). For a given n and arbitrary ε′ > 0, we define

m(n,ε′)
def
= n

(
1

E[|W |] + ε
′
)
, (A· 28)

m(n,ε′)
def
= n

(
1

E[|W |] − ε
′
)
, (A· 29)

Then we obtain the following lemma.

Lemma 6: For arbitrary small ε′ > 0

m(n,ε′) < Mn < m(n,ε′), a.s. (A· 30)

holds on EY when n→ ∞.

Proof: It is obviously ensured that Lemma 3 also holds on
EY because Eq. (A· 25) holds for any y∞ ∈ EY and because
W is finite. See the Appendix A in [6] for the details of the
proof. Lemma 3 implies Eq. (A· 30). �

(4) Evaluation of the separation patterns of xn into words

Next, we investigate the asymptotic property of Vm given by
Eq. (A· 11). We consider Lm(s) and PS (s) given by Eq. (A· 9)
and Eq. (A· 10). Summing up the each term of Eq. (A· 17)
for the words with same length s = |w|,

m
(
PS (s) − δ′m,s

)
< Lm(s)

< m
(
PS (s) + δ′m,s

)
, a.s. (A· 31)
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holds for each s (s = 1, 2, · · · ,K) when m → ∞. In
Eq. (A· 31), from the following relationship;∑

{w∈W:|w|=s}
δm,w < ||X||K ·max

w
δm,w, (A· 32)

we use δ′m,s such that

δ′m,s = ||X||K ·max
w
δm,w, (A· 33)

Here, δ′m,s = O

(√
log log m

m

)
.

From the definition of Vm, it is found that Vm is a ran-
dom variable. Vm means the total number of different sep-
aration patterns of word sequences when m and Lm(s) are
fixed. To evaluate Vm, we define Vm and Vm as follows:

Vm
def
=

m!∏K
s=1�m

(
PS (s) − δ′m,s

)
�!
, (A· 34)

Vm
def
=

m!∏K
s=1�m

(
PS (s) + δ′m,s

)
�!
. (A· 35)

where �z�means the maximum integer smaller than or equal
to z, and �z�means the minimum integer larger than or equal
to z.

We obtain the following lemma from Lemma 2 and
Eq. (A· 31).

Lemma 7:

Vm < Vm < Vm, a.s. (A· 36)

holds on EY when m→ ∞.

Proof: Eq. (A· 36). By substituting Eq. (A· 31) for the defi-
nition of Vm (Eq. (A· 11)), we obtain Eq. (A· 36). �

All definitions and lemmas used in the proof have been
prepared above. Finally, we give the complete proof of The-
orem 1 based on the above preparations.

A.3 Complete Proof of Theorem 1

Letting EC
Y be a complementary event of EY , we can rewrite

Eq. (7), by using Pr({EC
Y }) = 0, as

PXn (xn)

= Pr({y∞ ∈ Y∞|Y∗(y∞) = y∗ ∈ Γφ(xn)})
= Pr({y∞ ∈ EY |Y∗(y∞) = y∗ ∈ Γφ(xn)})
+ Pr({y∞ ∈ EC

Y |Y∗(y∞) = y∗ ∈ Γφ(xn)})
=

∑
y∗∈Γφ(xn)

Pr({y∞ ∈ EY |Y∗(y∞) = y∗}). (A· 37)

We define

pmax
EY

(xn)
def
= max
y∗∈Γφ(xn)

Pr({y∞ ∈ EY |y∗ = Y∗(y∞)}),
(A· 38)

then,

PY Mn (yMn ) ≤ pmax
EY

(xn), (A· 39)

holds for all yMn ∈ Γφ(xn). Here, obviously, PY Mn (yMn ) for
yMn which gives pmax

EY
(xn) satisfies Eq. (A· 39) with equality.

And Lemma 5 holds for such PY Mn (yMn ). Then we have

p(Mn,ε) < pmax
EY

(Xn) < p(Mn,ε), a.s. (A· 40)

when n→ ∞.
In Eq. (A· 37), replacing xn by Xn,

PXn (Xn)

=
∑

y∗∈Γφ(Xn)

Pr({y∞ ∈ EY |Y∗(y∞) = y∗})

≤ pmax
EY

(Xn) · ∥∥∥Γφ(Xn)
∥∥∥ , (A· 41)

holds.
Consequently, we can obtain

lim inf
n→∞

[
−1

n
log PXn (Xn)

]

≥ lim inf
n→∞

[
−1

n
log pmax

EY
(Xn)

]

+ lim inf
n→∞

[
−1

n
log

∥∥∥Γφ(Xn)
∥∥∥
]
. (A· 42)

First, we evaluate the first term of the r.h.s. of
Eq. (A· 42). From Eq. (A· 40), we have

lim inf
n→∞

[
−1

n
log pmax

EY
(Xn)

]

≥ lim inf
n→∞

[
−1

n
log p(Mn,ε)

]
, a.s. (A· 43)

And from Lemma 3,

lim inf
n→∞

[
−1

n
log p(Mn,ε)

]

= lim inf
n→∞

[
−1

n
log(2−Mn(H(Y)−ε))

]

= lim inf
n→∞

[ Mn

n
(H(Y) − ε)

]

=
H(Y)

E[|W |] −
ε

E[|W |] a.s. (A· 44)

holds. Then from Eq. (A· 43) and Eq. (A· 44), we have

lim inf
n→∞

[
−1

n
log pmax

EY
(Xn)

]

≥ H(Y)
E[|W |] −

ε

E[|W |] a.s. (A· 45)

Next, we evaluate the second term of the r.h.s. in
Eq. (A· 42). For fixed m and LMn (s) such that m =∑K

s=1 LMn (s), as mentioned in outline, the number of the
sequence Wm which is mapped to a certain Xn is upper
bounded by VMn . Because, for given n, Mn and LMn (s) are
also random variables, we need to pay attention in the fol-
lowing arguments.
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Now we decompose Γφ(Xn) by the length m as follows:

Γφ(X
n) =

⋃
m

{
Γφ(X

n) ∩ Ym
}
. (A· 46)

Because of Lemma 7 and limn→∞ Mn = ∞, we have

||Γφ(Xn) ∩ Ym|| ≤ Vm, a.s. (A· 47)

when n → ∞ for any y∞ ∈ EY and m ≥ 1. Considering the
set

Mn
ε′

def
=

{
m

∣∣∣∣ m(n,ε′) < m < m(n,ε′)

}
, (A· 48)

we have

||Γφ(Xn)|| =
∑

m

||Γφ(Xn) ∩ Ym||

=
∑

m∈Mn
ε′

||Γφ(Xn) ∩ Ym||

+
∑

m�Mn
ε′

||Γφ(Xn) ∩ Ym||. (A· 49)

Noticing Lemma 6, we find that the first term of the r.h.s. of
Eq. (A· 49) satisfies∑

m∈Mn
ε′

||Γφ(Xn) ∩ Ym|| ≤
∑

m∈Mn
ε′

Vm, a.s. (A· 50)

when n → ∞ from Eq. (A· 47). And the second term of it
satisfies

lim
n→∞

∑
m�Mn

ε′

||Γφ(Xn) ∩ Ym|| = 0, a.s. (A· 51)

We have therefore

||Γφ(Xn)|| ≤
∑

m∈Mn
ε′

Vm, a.s. (A· 52)

when n→ ∞. Defining M̃n for a given n as

M̃n = argmax
m∈Mn

ε′
Vm, (A· 53)

the following is obviously satisfied:

lim
n→∞ M̃n = ∞. (A· 54)

Because Vm ≤ VM̃n
holds for all m ∈ Mn

ε′ , we have∑
m∈Mn

ε′

Vm ≤ ‖Mn
ε′ ‖ · VM̃n

. (A· 55)

Consequently, from Eq. (A· 52) and Eq. (A· 55),

lim inf
n→∞

[
−1

n
log

∥∥∥Γφ(Xn)
∥∥∥
]

≥ lim inf
n→∞

[
−1

n
log

(
‖Mn

ε′ ‖ · VM̃n

)]
, a.s.

≥ lim inf
n→∞

[
−1

n
log

(
(2nε′ + 1) · VM̃n

)]
, a.s.

= lim inf
n→∞

[
−1

n
log(2nε′ + 1) − 1

n
log VM̃n

]
, a.s.

= lim inf
n→∞

[
−1

n
log VM̃n

]
, a.s. (A· 56)

From the definition of VMn , we have

−1
n

log VM̃n
= −1

n
log

M̃n!∏K
s=1�M̃n

(
PS (s) − δM̃n,s

)
�!
.

(A· 57)

Here we introduce a parameter τ such that �z� = τz in order
to rewrite Eq. (A· 57). τM̃n,s satisfies

�M̃n

(
PS (s) − δM̃n,s

)
�

= τM̃n,s · M̃n

(
PS (s) − δM̃n,s

)
. (A· 58)

Because

0 ≤ M̃n

(
PS (s) − δM̃n,s

)
− �M̃n

(
PS (s) − δM̃n,s

)
� < 1,

(A· 59)

we can obtain

1 − 1

M̃n

(
PS (s) − δM̃n,s

) < τM̃n,s ≤ 1, (A· 60)

then τM̃n,s → 1 when n→ ∞.
From Stirling’s formula [5],

m! =
√

2πm
(m

e

)m
eθm , (A· 61)

where θm is the term which satisfies θm → 0 when m → ∞,
we have

−1
n

log
M̃n!∏K

s=1�M̃n

(
PS (s) − δM̃n,s

)
�!

= −1
n

log
M̃n!∏K

s=1

{
τM̃n,s · M̃n

(
PS (s) − δM̃n,s

)}
!

=
M̃n

n

( K∑
s=1

τM̃n,s(PS (s) − δM̃n,s)

· log τM̃n,s(PS (s) − δM̃n,s)
)
+ γM̃n

, (A· 62)

where

γM̃n
=

(K − 1) log
√

2πM̃n

n

+

(∑K
s=1 θτM̃n ,s M̃n(PS (s)−δM̃n ,s)

− θM̃n

)
log e

n

+

∑K
s=1 log

√
τM̃n,s(PS (s) − δM̃n,s)

n

− M̃n

n

⎛⎜⎜⎜⎜⎜⎝
K∑

s=1

τM̃n,sδM̃n,s

⎞⎟⎟⎟⎟⎟⎠ log
M̃n

e

− M̃n

n

⎛⎜⎜⎜⎜⎜⎝1 −
K∑

s=1

τM̃n,sPS (s)

⎞⎟⎟⎟⎟⎟⎠ log
M̃n

e
. (A· 63)

Considering M̃n → ∞, θMn → 0, Mn

n → 1
E[|W |] a.s., τM̃n,s → 1

and δMn,s = O
(√

log log Mn

Mn

)
when n → ∞, we can obtain
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γM̃n
→ 0, a.s. when n → ∞. Here, the last term in

Eq. (A· 63) → 0 holds because, rewriting Eq. (A· 60), we
have,

0 ≤ 1 −
K∑

s=1

τM̃n,sPS (s) <
K∑

s=1

PS (s)

M̃n(PS (s) − δM̃n,s)
,

(A· 64)

and then

0 ≤ M̃n

n

⎛⎜⎜⎜⎜⎜⎝1 −
K∑

s=1

τM̃n,sPS (s)

⎞⎟⎟⎟⎟⎟⎠ log
M̃n

e

< O

⎛⎜⎜⎜⎜⎜⎝ log M̃n√
M̃n log log M̃n

⎞⎟⎟⎟⎟⎟⎠ . (A· 65)

From Lemma 6, M̃n

n <
1

E[|W |] +ε
′, a.s. is satisfied when

n→ ∞. Then we obtain by rewriting Eq. (A· 62),

lim inf
n→∞

⎡⎢⎢⎢⎢⎢⎢⎣−1
n

log
M̃n!∏K

s=1�M̃n

(
PS (s) − δM̃n,s

)
�!

⎤⎥⎥⎥⎥⎥⎥⎦
= lim inf

n→∞
[ M̃n

n

( K∑
s=1

τM̃n,s(PS (s) − δM̃n,s)

· log(PS (s) − δM̃n,s)
)]
, a.s.

> − H(S )
E[|W |] − ε

′H(S ), a.s. (A· 66)

From Eq. (A· 56), Eq. (A· 57) and Eq. (A· 66), we can
complete the evaluation of the second term of the r.h.s. in
Eq. (A· 42).

lim inf
n→∞

[
−1

n
log

∥∥∥Γφ(Xn)
∥∥∥
]

≥ − H(S )
E[|W |] − ε

′H(S ), a.s. (A· 67)

Finally we complete the proof of Theorem 1. From
Eq. (A· 45) and Eq. (A· 67), we have

lim inf
n→∞

[
−1

n
log PXn (Xn)

]

≥ H(Y)
E[|W |] −

H(S )
E[|W |] − ε

′′, a.s. (A· 68)

where ε′′ = ε
E[|W |] + ε

′H(S ). Because ε and ε′ are arbitrarily
small, we can set ε′′ be an arbitrarily small positive integer.
Consequently the proof of Theorem 1 was provided. �
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