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An Analysis of the Difference of Code Lengths
Between Two-Step Codes Based on MDL Principle

and Bayes Codes
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Abstract—In this paper, we discuss the difference in code lengths
between the code based on the minimum description length (MDL)
principle (the MDL code) and the Bayes code under the condition
that the same prior distribution is assumed for both codes. It is
proved that the code length of the Bayes code is smaller than that
of the MDL code by (1) or (1) for the discrete model class and
by (1) for the parametric model class. Because we can assume
the same prior for the Bayes code as for the code based on the MDL
principle, it is possible to construct the Bayes code with equal or
smaller code length than the code based on the MDL principle.
From the viewpoint of mean code length per symbol unit (com-
pression rate), the Bayes code is asymptotically indistinguishable
from the MDL two-stage codes.

Index Terms—Asymptotic normality, Bayes code, minimum de-
scription length (MDL) principle, universal coding.

I. INTRODUCTION

T HE minimum description length (MDL) principle which
was proposed by J. Rissanen has been studied [24]–[29]

not only in the universal source coding but in the areas of data
analysis, learning theory, and the statistical model selection
[13], [14], [17], [36].

We discuss two-step coding based on the MDL principle.
Since coding based on the MDL principle is the method min-
imizing the total description length of the data and a proba-
bilistic model, the MDL criterion selects a particular model,
and is closely related to Bayesian statistics. This is because the
MDL supposes the prior distribution implicitly and is essentially
equivalent to the maximization of the posterior probability.

On the other hand, Bayes coding [4], [20], whose code length
is also called stochastic complexity [23], [29] is the method
which uses the mixture of all models explicitly over a model
class for coding function. Recently, efficient algorithms to cal-
culate the mixture probability of the data sequence have been
reported for the FSMX model class [18], [21], [38]. The Bayes
code is given by the Bayes optimal solution for the code length
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[20], [23]. Therefore, if we can assume the same prior distribu-
tion, it is clear that the Bayes code is not worse than the two-step
code based on MDL principle (MDL code1 ) [29].

The properties of these codes have been studied indepen-
dently (see [4], [5], [13], [18], [20], [24]–[29], [34]–[36]). The
main interest here is a quantitative evaluation between the MDL
code and the Bayes code. For the same prior, the code length of
the Bayes code is a lower bound on that of the MDL code for
any data sequence [29], since the Bayes code is the Bayes op-
timal. Moreover, both of these two codes are asymptotically op-
timum [4], [14]. The analyses on the MDL and the Bayes code
from the viewpoint of the estimator also have been studied [35].
However, the difference between the code lengths has not been
analyzed directly or quantitatively.

In this paper, we analyze the difference of the code lengths
between the MDL code and the Bayes code for the discrete, the
parametric, and the hierarchical model classes, and show that the
code length of the Bayes code is smaller than that of the MDL
code by or for the discrete model class, and by
for the parametric model class. For hierarchical model classes,
the difference of the code lengths between the MDL code with a
mixture over parameters but a selection for the model order and
the Bayes code which uses a mixture over both parameters and
models is . The essence of the analysis for the parametric
model class is that the posterior probability density of the pa-
rameter on Bayesian inference satisfies asymptotic normality.
Because we assume the same prior for the Bayes code as that of
the MDL code in practice, it is possible to construct the Bayes
code with equal or smaller code length than the MDL code.
However, from the viewpoint of mean code length per symbol
unit, that is, compression rate, the Bayes code is asymptotically
indistinguishable from the MDL two-stage codes.

II. PRELIMINARIES

In this paper, we deal with the discrete, the parametric, and
the hierarchical model classes. Let be a discrete source
alphabet and a random variable on . And we denote
the data sequence with lengthemitted from the source by

, where . An
infinite sequence from the source is denoted by. The set of
all , is denoted by , where

and . We denote a random variable

1We call this the MDL code, although the Bayes code was also proposed from
the viewpoints of the MDL principle by Rissanen [29].
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on by . The source emits a data sequence with true
probability distribution

which was previously unknown. is a probability func-
tion and is a probability density function. Throughout the
paper, we suppose that the logarithm base isand the measure
of the code length is in nats.

For a matrix vector of length , , and a matrix
, we define the norms and .

Here, is the transpose of vector. And, for the some dif-
ferentiable function with respect to -dimensional vector

, we define that

and

are the matrix having as the th element and the

matrix having as the - th component, respectively. We
also denote them by and , respectively. For an area

, volume is denoted by , where is -dimensional
Euclidean space.

A. The Discrete Model Class

Let be a model in a discrete and finite model class, .
That is, is a countable set. The data sequenceis emitted
from the true distribution . We do not assume in analysis
that the model class includes the true distribution . Let

be the probability function for the
model , and let be the description length for describing

. Then, we can encode using a model , and its code length
is given by . The code length of the MDL
code is, therefore, given by

Here, we assume that [23].2 Then, we can
regard as the prior probability of the model.
Then the code length of the MDL code, ,3 is defined
by4

(2)

On the other hand, if the prior probability is assumed,
we can construct a Bayes optimal solution for the loss function

2If e > 1, then the prefix code does not exist, else if
e < 1, then it causes the loss of the code length.

3The superscript� ofL (x )means the code for the discrete model class.
Later, we define the code length of the MDL code,L (x ), for the para-
metric model class.

4The MDL estimator~� is given by

~� = arg minf� logP (x j�)� logP (�)g

= arg maxP (�jx ): (1)

Therefore, the MDL principle is equivalent to choose the model having the max-
imum posterior probability for the discrete model class [30], which is the Bayes
optimal solution for the0-1 loss function.

for the code length [20]. The Bayes code which is the Bayes op-
timal solution is given by the code using the mixture probability
of all models. The code length of the Bayes code is
given by

(3)

B. The Parametric Model Class

We consider the parametric model class
which has a -dimensional continuous parameter

is a continuous vector in the parameter space, where
is a compact subset of . That is, and . The
data sequence is derived from the true distribution .
We do not assume that the model class includes the true distri-
bution .

Since is a continuous vector, we cannot encodeas is.
In the MDL code, the parameter set is quantized into count-
able cells and a quantized parameterwhich is the representa-
tive point of a cell is encoded. Let be the set of all quan-
tized parameter values , which may depend on. That is,

when is encoded. Number each quantized cell in
the parameter space. Let be the set of all parameter in the
th quantized cell . We assume

and , . Let be the quantized
width of the th side of the cell represented by. The number
of the cells is . Then, it is possible
to construct the prefix code which describes the quantized pa-
rameter by the length [23],
where is the prior density of the parameter, satisfying

. We assume that satisfies

Therefore, we can interpret as the prior
probability on .

Here, we must consider the method for the quantization of
the parameter space into cells, and an asymptotic method gives
a solution. The asymptotic optimal quantized width for the code
length is given by

(4)

Hence, [14], [24], [35], [37], [39], using
the asymptotic normality of the maximum-likelihood estimator.
Here is the Fisher information matrix5 defined by

(5)

and is the expectation under .

5Later, we will define another information matrixI (� ) for analysis.
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Then, the code length of the MDL code is given
by

(6)

On the other hand, the code length of the Bayes code
is given by

(7)

where the integral is calculated over the parameter set6 [4],
[5], [20]. Equation (7) is the Bayes optimal decision for the code
length loss function (the logarithmic loss function) for the para-
metric model class [20].

C. The Hierarchical Model Class

We consider the (partial) hierarchical model class

is a discrete label for models in the discrete and finite
model class . That is, is a finite countable set. If
each model has a -dimensional parameter

in a parameter space which is a
compact subset of , then specifies a parametric model
class.

Let be the class of the probability distribution of the
model . Then the (partial) hierarchical model classis de-
fined by

(8)

We also denote the model class by

Here the nested structure

(9)

may be satisfied for and
This nested structure may be linear order or partial

order.7

Let be the description length to describe the label
. We assume the prior distribution on . For

the hierarchical model class, two types of MDL codes can be
defined.

6The mixture code may be also defined by the mixture for the quantized pa-
rameters which is given by

� log P (x j� )f(� ) � (� ):

However, since the prior density is assumed, the Bayes code as Bayes optimal
solution is given by (7) which is the limitation of the above equation as
� (� ) ! 0 [23].

7For example, the finite Markov sources have linear order structure. The
FSMX sources have partial order structure.

The MDL Code Type1:At first, we consider the MDL code
which uses an operation of parameter quantization to describe
both a quantized parameter and a discrete label . Sim-
ilarly, with the parametric model class, the code length of the
MDL code with parameter quantization is given by

(10)

where is a set of all quantized parameter values of a
model , and is the Fisher information matrix of a
model defined by

(11)

Here, is the expectation under . That is,
when is encoded and we assume

The MDL Code Type2:Second, we define the MDL code
which uses the mixture for parameter and selects only a discrete
label

(12)

(13)

The latter is the minimization of the Bayes code for the param-
eter and excludes the quantization of the parameter.

The Bayes Code:On the other hand, the Bayes code is given
by

(14)

Here, the integral is calculated over the parameter space.
As we have mentioned above, the Bayes code is characterized

using the mixture distribution over all models for the coding
function! In the following section, we analyze the difference of
the code lengths between the MDL code and the Bayes code for
the discrete, the parametric, and the hierarchical model classes.

III. A NALYSIS FOR THEDISCRETEMODEL CLASS

In this section, we analyze the difference of code lengths,
(2) and (3), for the discrete model class. The data sequence is
emitted from the true distribution and we do not assume
that exists in the model class.
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A. Assumptions

Let be the set of minimizing , where
is given by

(15)

where is the expectation under . Minimizing
is equivalent to minimizing , where

(16)

We denote a minimizing as , which may not
be unique. That is, . This is so because there may exist

and such that and .
We can also show a case in which , which
leads to . In these cases, if
and minimize . We call the optimal model. Let

be the set of not minimizing . That is,
.

We assume the following condition which will be needed in
our derivations.

Condition 1:

i) .

ii) For , .

iii) (The strong law of large numbers) For

a.s. (17)

That is, for and

(18)

is satisfied for all sufficiently large with probability
one.

We also denote almost sure convergence as, for example,

a.s.

or

a.s. when

If (17) is satisfied, then

a.s. (19)

as is satisfied for , where

(20)

Because for , then we have

a.s. (21)

when .

B. Examples for Model Class

Example 1 [Multinomial Independent and Identically Dis-
tributed (i.i.d.) Source]: Consider the multinomial i.i.d. source
with . Let be the probability of the
symbol , and . Then the vector

specifies a probabilistic model.
Let mean

where

In the same way, let be

Thus, we can define the model class to be .
The true probability is denoted by ,
where is the true probability of the symbol. The optimal
model may not be unique in this case.

For example, when , we may define discrete models
such as

Then the model class is . If

then

and

where

and

For the multinomial i.i.d. source, the strong law of large
number is satisfied [8]. That is,

a.s. (22)

as where is the number of times the symbolappears
in . On the other hand, is given by

(23)

From (22), we have

a.s. (24)
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when for , where

This model class satisfies Condition 1, iii).
We have, therefore,

a.s. (25)

where is given by

(26)

On the other hand, is satisfied
for all and all by definition.

Example 2 (Finite Ergodic Markov Source):We consider a
finite ergodic Markov source on . Let

be the probability of the symbolat the th state , where
and . Let be the stationary proba-

bility of the state , where which are uniquely
decided by , and . Those of model
are denoted by and . Let a model be

and the model

where .
We assume the initial state is known. Let be the

numbers of times the states appear in , respectively.
Let be the numbers of times the symbols

appear conditioned by the statein data sequence
, respectively. That is, and . The

true probability of the symbolat the th state is denoted by
, , where is given by

(27)

That is,

is given by

(28)

where are random variables representing the numbers
of times each symbols appear conditioned by
the states , in the random variable . The
stationary probabilities on the states calculated by are
denoted by . In this case, it is known that the strong
law of large number is satisfied, that is,

a.s. (29)

a.s. (30)

when .

We may define model class in the same way as in Ex-
ample 1. That is, the model may be defined by

and is given by

(31)

Therefore, we have

a.s. (32)

when . This model class satisfies Condition 1, iii).
We have, therefore,

a.s. (33)

where is given by

(34)

is satisfied for and
.

C. Main Results for the Discrete-Model Class

First, we show the following lemma.

Lemma 1: Under Condition 1, the asymptotic code length of
the Bayes code is given by

a.s.

(35)
where is the positive term such that , a.s.,
when .

Proof: From the definition of , we have

(36)

Because is finite and , a.s., when for
all and all from (21), we have

a.s. (37)
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Therefore, we have

a.s. (38)

Thus, the proof is completed.

Lemma 1 is used in the proof of the following main results. In
some cases, we can assume that two or more identical models
are not included in the model class and the optimal model is
unique. When , the code length is given by

a.s. (39)

Next, we show the key theorem in order to analyze the differ-
ence of the code lengths between the MDL codes and the Bayes
codes.

Theorem 1: For the same prior probability, the relation be-
tween (2) and (3) is given as follows:

(40)

Here, represents the model which maximizes the posterior
probability .

Proof: From Bayes rule

(40) is obviously obtained.

This theorem shows that the code length of the Bayes code is
smaller than that of the MDL code by the factor
on the same prior, and the Bayes code is effective for the finite
length of the data sequence. Next, we consider the order of the
term .

Usually, the optimal model is unique. First, we show the
convergence rate of the difference of the code lengths in this
case.

Theorem 2: Under Condition 1, if is unique, that is,
, then the relation between (2) and (3) is given by

a.s. (41)

where is the positive term such that , a.s., as
.

Proof: From

(42)

and (21), we have

a.s. (43)

for and . Therefore, we have

a.s. (44)

Hence, the model which maximizes the posterior proba-
bility almost surely corresponds to the true model

asymptotically, that is, for all sufficiently large with
probability one (strong consistency, see [15] and [32]). Then we
can substitute for when . Therefore, we have

a.s. (45)

The proof is completed.

This theorem implies that the difference of the code lengths
between the MDL code and the Bayes code converges towhen
the optimal model is unique. Then, the code lengths for both
codes are asymptotically equal.

Next, we consider the case .

Theorem 3: Under Condition 1, if and

for

then, the relation between (2) and (3) is

a.s. (46)

where is the positive term such that a.s.
when , and the positive constant is given by

(47)

Proof: From the equation

(48)

and Lemma 1, we have

a.s.

(49)

From (43), we have , a.s., for .
On the other hand, for , we have

a.s. (50)

because

for

The first term of the right-hand side (RHS) of (50) is inde-
pendent of the sample sizeand dominates the equation. Then,
the code length of the MDL code in this case is given by

a.s. (51)

So the following equation is obtained:

a.s. (52)
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where is the term such that , a.s., when
.

From Condition 1, ii), we have

(53)

Therefore, the constant is positive, and the proof is com-
pleted.

This result may be interpreted as follows. The model selection
by the MDL principle for the discrete model class is essentially
equivalent to that of maximization of the posterior probability. If

is unique, then will be asymptotically obtained by
maximization of . However, if there are models and

satisfying , , and ,
then the model which has maximum prior probability in
will be asymptotically selected by maximization of .
That is, when the optimal model is not unique, the posterior
probability of an optimal model does not approach,
so that uncertainty asymptotically remains for model selection.
This uncertainty in the model selection makes the code length
of the MDL code larger.

On the other hand, the Bayes code uses the mixture
. Consider a case such that there is a model

satisfying

If we define as

and

for in , remove satisfying and ,
and construct the Bayes code for such a reconstructed model
class, then its code length is asymptotically equivalent to that
of the original Bayes code and we can regardas the unique
optimal model. Thus, the code length of the Bayes code is not
made larger even if there exist models , ,
and .

Next we consider the case that there are models,and ,
satisfying and , . For
most practical model classes, if for ,

, then

a.s. (54)

or

a.s. (55)

Example 3 (Multinomial i.i.d. Source):Again consider Ex-
ample 1. Since , a.s., we have , almost surely.
On the other hand, for all we have

(56)

Because , a.s., if then
.

Of course,

a.s. (57)

holds for . Nevertheless, , a.s.

does not hold. diverges almost surely with an order

. Similarly, finite ergodic Markov sources also
satisfy (54) or (55). See [8].

Theorem 4: Assume Condition 1. If and

for

and (54) or (55) hold, then the relation between (2) and (3) is
given as follows:

a.s. (58)

Proof: Since (54) or (55) hold, we have

a.s. (59)

for , . So analogy with Theorem 2 leads to (58).

IV. A NALYSIS FOR THEPARAMETRIC MODEL CLASS

In this section, we discuss the difference between the code
lengths from (6) and (7), for the parametric model class

. The data sequence is emitted from
and we do not assume that is in the model class.

We define the information matrix as follows:

(60)

in which is the expectation under .
is not generally satisfied. From the definition
when . However, for most

of practical model classes for source coding,
is satisfied even if because is discrete. See
Examples 4 and 5.

We also define as follows:

(61)

Let be the optimal parameter given by

(62)

We denote the maximum-likelihood estimator and the max-
imum posterior estimator given by and , respectively,

(63)

(64)
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A. Assumptions

Defining

we assume the following conditions for the parametric model
class and Bayesian inference.

Condition 2:

i) (Existence of ) The function is a unimodal
function with a maximum point in the interior of .
That is, the optimal parameter uniquely exists in the
interior of .

ii) (Smoothness of class) The Fisher information matrix
satisfies for ,

where is a positive constant. When ,
. Moreover, and

satisfy

(65)

(66)

for .

iii) (Smoothness of the prior) For , and
is three times continuously differentiable for.

That is, we have

(67)

where is a finite constant depending only on.

iv) (Existence of estimators) The likelihood function
given is unimodal or monotonic with

respect to for . The posterior density
function has a unique maximum in for

. That is, both of the maximum-likelihood
estimator and the maximum posterior estimator
uniquely exist in .

v) (Consistency of the maximum posterior estimator) The
maximum posterior estimator is strongly consistent.
That is,

a.s. (68)

when .

vi) (Consistency of the information matrix) There exists
, such that

a.s. (69)

a.s. (70)

uniformly for all .

Because

for all , and

a.s.

uniformly for all , if , a.s., is not satisfied,
so (68) is also not satisfied. Therefore, (68) means a.s.

From Condition 2, i), iv), and v), the likelihood function
and the posterior density function given

are almost surely unimodal functions when .
Here, we just show the asymptotic normality of the max-

imum-likelihood estimator since it is used in the discussion in
mean code length of the MDL codes [14]. However, it will not
be directly used in the proof of the results in this paper.

Condition 3: The distribution of con-
verges to a normal distribution with mean zero and covariance
matrix . Hence, in particular, if is an arbitrary

-dimensional rectangle, its probability induced by
satisfies

(71)

Remark 1: Next we consider Condition 2, iii). As an ex-
ample, the Dirichlet distribution is the conjugate prior for the
multinomial distribution class and is obviously three times con-
tinuously differentiable. This prior is also useful for the Markov
model [21].

Remark 2: We consider Condition 2, v) and vi). For many
practical classes used for source coding, e.g., a finite ergodic
Markov source, the iterated logarithm law of the maximum-like-
lihood estimator is satisfied, which leads to the strong consis-
tency of the maximum-likelihood estimator, Condition 2, v) [8].
Moreover, this leads to Condition 2, vi), in practical cases, see
Examples 4 and 5.

B. Examples for Model Class

Next, we show examples of the parametric model classes sat-
isfying Condition 2. The model classes of these examples are
useful for the source coding.

Example 4 (Multinomial i.i.d. Source):Consider the
multinomial i.i.d. source on . Let

be the probability of the symbol, . The vector
specifies the probabilistic model,

where . Letting be continuous parameter on
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where , this model class is a parametric model
class.

We assume that exists in the interior of . The informa-
tion matrix is given by

(72)

where the ’s are given by for
and ’s are random variables representing the appearance
numbers of symbols in , respectively. That is,
the th element of is given by

(73)

and the th element of is given by

(74)

where . Therefore, is
obviously differentiable. When , reduces to

. Since the determinant of is given by

(75)

is minimized when and its
minimum value is given by

(76)

Since for , we have

and . Therefore, Condition 2, i) is satisfied.
Since

for

we cannot assume for some constant for
the multinomial distribution class.

The likelihood function is given by

(77)

and this function has a unique maximum in for ,
where is the appearance number of the symbolin . The
maximum-likelihood estimator is given by ,

. It was shown in [8] that this model class satisfies
the strong law of large numbers, that is,

a.s. That is, a.s. If we assume the Dirichlet prior
density on , then is given by

where is a parameter of the Dirichlet prior density and Condi-
tion 2, vi) is satisfied. Therefore, we have a.s.
in this case. If , then

uniformly for and we have a.s. Then,
Condition 2, v), is satisfied in these cases. Moreover, Condition
2, iv) is obviously satisfied.

Next we consider Condition 2, vi). is given by

(78)

That is, the th element of is

(79)

and the th element of is

(80)

when . Since a.s., we have

a.s. (81)

and

a.s. (82)

Therefore, there exists so that
, a.s., and

a.s.

uniformly for . Then Condition 2, vi) is satisfied.
Therefore, this model class satisfies Condition 2 for the multi-

nomial distribution class. When exists in the interior of ,
we can also see that Condition 3 is satisfied from [8].

Example 5 (Finite Ergodic Markov Source):Consider the
finite ergodic Markov source on . Let

be the probability of the symbolat the th state
, and , the stationary probability of the states, where

and . We assume that the set of states
is known but the optimal parameter is unknown. We may
regard as a continuous parameter,
where .
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Let be random variables representing the appearance
numbers of the symbols conditioned on the states

, in the random variable . We define

Then the optimal parameter is given by

The stationary probabilities on the states calculated byare
denoted by .

The information matrix is given by

(83)

where

and

So is obviously differentiable. When ,
. The determinant of is given by

(84)

Here depends on , and it is difficult to derive the general
formula of using only . However, the structure of
the finite ergodic Markov source is given, can be written
as , and we can see . For example,
for the binary first-order Markov chain such that ,

, and means that the current symbol is ,
and are given by , and , respectively. The

is therefore given by

(85)

When , the above function is minimized
and its minimum value is . Letting or
or , . Thus, is not
upper-bounded, but is lower-bounded by some positive constant

. Therefore, this model class also satisfies Condition 2, ii).
We assume the initial state is known again. We define

and similar to Example 2. That
is, and . The likelihood function

is given by

(86)

and this function has a unique maximum in. It is known that
the strong law of large number is satisfied [8], that is,

a.s. (87)

which is equivalent to Condition 2, v). If Condition 2, i) is sat-
isfied, then Condition 2, iv) is also satisfied.

Moreover, since is given by

(88)

and (87) is satisfied, we see that Condition 2, vi) is satisfied by
a discussion similar to that for Example 4.

Therefore, the finite ergodic Markov source satisfies Condi-
tion 2. We also see that Condition 3 is satisfied from [8].

We do not retain the assumption of i.i.d. property in Condi-
tion 2. Generally speaking, asymptotic normality holds for other
than i.i.d. property. These conditions are general and practical,
especially for the discrete distributions used in source coding.

C. Essential Lemma for Analysis (Asymptotic Normality of
Posterior Density)

Before analyzing of the code lengths, we state the asymp-
totic normality of the posterior distribution. Rissanen discussed
the code length of the maximum-likelihood code on the asymp-
totic normality of the maximum-likelihood estimator [30]. See
also [6]. The key to the analysis in this paper is the asymp-
totic normality of the posterior distribution. We can prove the
almost sure convergence of the posterior density under Condi-
tion 2 from similar discussion in [2, Propositions 5.13 and 5.14,
pp. 285–297]. Then, we have the following important lemma.

Lemma 2 (Asymptotic Normality):Under Condition 2, the
Bayesian posterior densities of the parameter satisfy asymptotic
normality in almost sure. That is, the posterior distribution of

converges almost surely to a normal dis-
tribution with mean zero and covariance matrix . In
particular, if is arbitrary -dimensional rectangle, its proba-
bility mass induced by satisfies

a.s. (89)

where is the posterior density of which is given by

(90)

Moreover, the posterior density satisfies

a.s. (91)

uniformly for , where is arbitrary -dimensional
rectangle satisfying .

Proof: See Appendix A.

The asymptotic normality is essential for the proof of The-
orem 5.

D. Main Results for the Parametric Model Class

For the difference of code lengths, we show the following
result first.

Lemma 3: We define

and
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Then the relation between (6) and (7) is given by

(92)

Proof: From (6) and (7), we have

(93)

In the above equation

(94)

is the posterior density at the point . From
and (90), the proof is completed.

Next, under Condition 2, we obtain the asymptotic differ-
ence between and using Lemma 2 and
Lemma 3.

Theorem 5: Under Condition 2, the relation between (6) and
(7) is asymptotically given by

a.s. (95)

where is the term such that
for sufficient large . That is, there exist and
such that

a.s. (96)

when .
Proof: See Appendix B.

We can interpret Theorem 5 as follows: The second term on
the RHS in (92) can be interpreted as the posterior probability of
the cell of the quantized parameter. The posterior distribution of
the parameter is asymptotically normal whose variance–covari-
ance matrix is . On the other hand, the quantized
width of the parameter is also proportional to the standard devi-
ation of the posterior probability density toward the quantizing
axis. The more the standard deviation of the posterior density
decreases as the sample size increases, the smaller the quan-
tizing widths in relation to this standard deviation. Thus, this
posterior probability of the quantization cell does not converge
to , that is, the true quantization cell does not exist from the be-
ginning although the true parameter exists. For this reason, the
difference of the code lengths does not converge to.

V. ANALYSIS FOR THEHIERARCHICAL MODEL CLASS

We analyze the difference of the code lengths between the
MDL code and the Bayes code for the hierarchical model class.
For the hierarchical model class, we denote

(97)

The data sequence is emitted from the true distribution
and we do not assume that exists in . Although

the hierarchical model class defined in this paper may not have
a nested structure, it is a trivial case and does not lead to a con-
tradiction of the results.

The optimal parameter of a model is defined by

(98)

where is given by

(99)

We denote the maximum-likelihood estimator and the max-
imum posterior estimator of the model given by
and , respectively. And we define the information matrix

as follows:

(100)

for is not generally
satisfied. But, holds for most of the
practical model classes for source coding.

Note that there may exist , , , and where
, satisfying . The

optimal model is defined as follows:

(101)

where is given by

(102)

Finally, we define the ball

We assume the following conditions for the model class and
Bayesian inference. These conditions are stronger than those
assumed in analysis for the parametric model class, that is, we
assume the iterated logarithm law in this section.

Condition 4:

i) (Existence of ) For , the function
is a unimodal function on with

maximum point in the interior of . That is, the
optimal parameter of model , , exists uniquely in
the interior of for .

ii) (Smoothness of class) For , the Fisher informa-
tion matrix satisfies

for
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where is some positive constant. When ,
. Moreover, and

satisfy

(103)

(104)

for .

iii) (Smoothness of prior) For and ,
and is three times continu-

ously differentiable for . That is, we have

(105)
where is some finite constant depending only on

.

iv) (Existence of estimators) The likelihood function
with respect to given is uni-

modal or monotonic on for . The posterior
density function has a unique maximum
in . That is, both the maximum-likelihood estimator

and the maximum posterior estimator uniquely
exist for and .

v) (Iterated logarithm law: I) For

a.s. (106)

vi) (Iterated logarithm law: II) There exists for
so that

a.s. (107)

a.s. (108)

a.s. (109)

uniformly for .

From Condition 4, ii), the distribution of conditioned by
satisfies the following inequality for and

:

(110)

Here, is a finite constant depending only on
and .

Example 6 (Finite Ergodic Markov Source):Consider a fi-
nite ergodic Markov source on . Let the
set of states of the Markov model be previously unknown. That
is, we do not know the length of memory.

Let be a model specifying a set of states

where is the number of states of the model . Similarly,
we can construct , , . For example, we consider the bi-
nary alphabet . Let be the simple Markov model
with two states. Let be the second-order Markov model with
four states. Similarly, we define , , , as the third-order
Markov model, the fourth-order Markov model, , respec-
tively. Then we construct by , where

is the number of models and is the th-order Markov
model.

Each model has a parameter with elements

. Here, is the probability of the symbolat the
th state of a model , and , the stationary prob-

ability of the states , where and
and is the number of states of the model. We may re-
gard as a continuous parameter,
where .

We assume the initial state is known. Let be random
variables representing appearance numbers of each symbols

conditional on the states ,
of the random variable . We define

Then, the optimal parameter is given by

The stationary probabilities on the states of the modelcalcu-
lated by are denoted by .

From the iterated logarithm law [8], [10], we have

(111)

for . Using this fact, we can show that this model class
satisfies Condition 4 for by a discussion similar to
that of Example 5.

Theorem 6: For the same prior probability, the relation be-
tween (12) and (14) is

(112)

Here, represents the model which maximizes the posterior
probability , which is given by

(113)
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Proof: This can be proved by a discussion similar to that
of Theorem 1.

This theorem shows that the code length of the Bayes code
is smaller than that of the MDL code by using
the same prior, and the Bayes code is effective on finite data se-
quences. Next we consider the order of the term .

The following lemma showing the order of is
very important for the analysis in this section. From this lemma,
we can analyze the difference of the code lengths by regarding

as a discrete model class.

Lemma 4: Under Condition 4, we have8

a.s. (114)

Proof: See Appendix C.

Then, we have the following theorem.

Theorem 7: Under Condition 4, the relation between (12)
and (14) is given by

a.s. (115)

where is positive and .
Proof: From Lemma 4, the model which maximizes

the posterior probability asymptotically corresponds
to the optimal model . Then

(116)

From this equation and Theorem 6, the theorem is proved.

This theorem shows that the difference of the code lengths
between the code using mixture of all models and the code based
on model selection vanishes. Next, we consider the difference
of the code lengths between (10) and (14).

Theorem 8: Under Condition 4, the relation between (10)
and (14) is given by

a.s. (117)

where is the term such as .

Proof: Define as

(118)

8This result shows the strong consistency of the model selection by maxi-
mization of the posterior probability, whose asymptotic formula, the Bayesian
information criterion (BIC), was proposed by Schwarz [31].

From Lemma 3, under Condition 4, we have

(119)

for where is the posterior density of
given by

(120)

From Theorem 5, the following asymptotic in equation is satis-
fied:

a.s.

(121)

when , where and are positive constants.
From (119) and (121), we have

a.s. (122)

From (122) and Theorem 7, the proof is completed.

For the hierarchical model class, it is clear that parameter
quantization is not effective for source coding. In the above the-
orem, the difference of both code lengths is given by constant
order.

VI. DISCUSSION

Although it had been shown that the Bayes code is more ef-
fective than the MDL code from the viewpoint of code length
with the same prior distribution for finite value of [29], we
analyzed the difference quantitatively in this paper.

Since the difference of both code lengths is not larger than
, the difference of the mean code lengths per symbol (com-

pression rate) is not larger than and converges to. The
nonpredictive MDL principle which is discussed in this paper
has two points of operation, i.e., the operation of parameter
quantization and that of selection of a model or a representa-
tive point of the quantized parameter, where the former has a
stronger influence on the difference of the code lengths than the
latter.

If the prior distribution of the Bayes code may be different
from that of the MDL code, then it is possible to find a case
in which the code length of the MDL code is smaller than that
of the Bayes code for some information source. The coding
which has larger prior probability for the optimal model is ef-
fective. However, we cannot practically establish the prior distri-
bution with a large probability for the optimal model when the
optimal probability model is unknown. Therefore, the results
which were discussed under the condition that the same prior
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was assumed are practical and important. In practice, since we
can recognize the prior distribution of the MDL code before-
hand, it is surely possible to construct the Bayes’ code who’s
code length is equal or smaller than that of the MDL code.

From the above, the selection of a probabilistic model is not
always effective for all various purposes. We have reconfirmed
that the effectiveness of the MDL principle occurs within the
framework of statistical model selection or universal modeling
[30].

When the MDL principle is applied to the model selec-
tion problem, should be applied rather than

. This is because

for

that is, are not true MDL. On the other hand,
is Bayes optimum code length when is

fixed. Minimization of is equiv-
alent to maximization of the posterior probability .
From Lemma 4, this criterion for model selection has strong
consistency for the hierarchical model class.

VII. CONCLUSION

In this paper, we have analyzed the difference of the code
lengths between the MDL code and Bayes code. From the re-
sults, the effectiveness of the Bayes code against the MDL code
with parameter quantization has been shown from the stand
point of code length. Future work includes discussion of the
properties of other types of MDL codes [30], or the relation
between the MDL criterion, the Bayesian model selection, and
conventional information criteria in model selection [1], [15],
[19], [22], [31], [32] from new viewpoints.

APPENDIX A
THE PROOF OFLEMMA 2

For the asymptotic normality of the posterior distribution, the
following necessary and sufficient condition shown in [2, pp.
285–297] and [7] is useful.

Lemma 5 [2], [7]: Fix a sequence . Let be a strict local
maximum of satisfying

(123)

and implying positive definiteness of

(124)

Defining

the following three basic conditions are necessary and sufficient
for the asymptotic normality of the posterior distribution.

c.1) “Steepness:” , where is the largest
eigenvalue of .

c.2) “Smoothness:” For any , there exists and
such that, for any and ,
exists and satisfies

(125)

where is the identity matrix and is a
symmetric positive–semidefinite matrix whose largest
eigenvalue tends to as .

c.3) “Concentration:” For , when

(126)

Conditions c.1) and c.2) imply that

(127)

with equality if and only if c.3) holds.
Moreover, given c.1), c.2), and c.3),

converges in distribution to-dimensional standard normal dis-
tribution

where is -matrix satisfying .

At first, we show that c.1)–c.3) of Lemma 5 hold almost
surely under Condition 2 and the posterior distribution con-
verges almost surely to the normal distribution from Lemma 5.

Since is three times continuously differentiable from
Condition 2, iii), we have

(128)

Since does not depend onand Condition 2, vi), we
have

a.s. (129)

uniformly for . We have, therefore,

a.s. (130)

where is given by

(131)

From a.s. and Condition 2, ii), there exist the posi-
tive constants and such as

a.s.

when . Then, since a.s., the
largest eigenvalue of tends to almost surely, and c.1) is
almost surely satisfied.

Since , satisfies

a.s. (132)

uniformly for form (129). From Condition 2, ii),
c.2) is almost surely satisfied.

Therefore, from

and
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we have

a.s. (133)

from Lemma 5 and (130). Here . If

a.s. (134)

holds, then we have

a.s. (135)

from Lemma 5. Then we show (134) at last.
We have

a.s. (136)

as uniformly for for from Con-
dition 2, iii) and vi). From Condition 2, i),
for . On the other hand, since , almost
surely , given is a unimodal function with respect
to almost surely when from Condition 2, i) and iv).
This is because given is a unimodal or monotone
function with respect to and exists in the interior of
almost surely when . From (136) and unimodality of

, there exists such that

a.s. (137)

uniformly for when .
Therefore,

a.s. (138)

holds uniformly for when .
On the other hand, from (133) and

, there exists such that

a.s. (139)

holds when .
From (138) and (139), we have

a.s. (140)

holds uniformly for when . We have,
therefore,

a.s. (141)

because . This means

a.s. (142)

From a.s. we have a.s.
when for . This means that c.3) is
almost surely satisfied.

Since c.1)–c.3) are almost surely satisfied, we have

a.s. (143)

from Lemma 5. And the posterior distribution of
converges almost surely to the normal distribution

with mean zero and covariance matrix . The first
half of the theorem is proved.

Next, we show the uniform convergence of the posterior den-
sity for . From Taylor expansion, we have

(144)

where is given by

 L (145)

for some lying between and .
We have, therefore,

(146)

For any rectangle , there exists such as

Therefore, we have uniformly for
. This implys

a.s. (147)

when uniformly for for , since

a.s.

and a.s. uniformly for .
From (146) and (147), we have

a.s.

(148)

uniformly for . Since is
upper-bounded for , we have

a.s. (149)

uniformly for . From (143), the proof is completed.

APPENDIX B
THE PROOF OFTHEOREM 5

From Lemma 2

a.s. (150)

uniformly for . On the other hand, gives the strict
maximum of . Then, from (150), the posterior density

satisfies

a.s. (151)
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when for , where is given by

(152)

Let be a rectangle whose volume is sufficiently large such
that . Since

from Condition 2, ii), and is almost surely unimodal
when from Condition 2, iv) and v), we have

a.s.

a.s. (153)

when for .
On the other hand, the derivatives of and

with respect to exist from Condition 2, ii).
Moreover, a.s. from Condition 2, v), and

from Condition 2, ii). Therefore, we have

a.s. (154)

a.s. (155)

uniformly for when . Equation (155) is derived
from uniformly for because .
From (153), (154), and (155)

a.s. (156)

is satisfied when for . Therefore, from Lemma
3, it has been proved that there exists such as

a.s. (157)

when , where .
Next, we shall show

a.s. (158)

for sufficient large . From Condition 2, ii), we have

a.s. (159)

when for , where depends on .

From (155), there clearly exists such as

a.s. (160)

when .
From (155), (159), and (160) there exists such as

a.s. (161)

is satisfied when , which leads to (158).9

Since both of (157) and (158) are proved, the proof is com-
pleted.

APPENDIX C
THE PROOF OFLEMMA 4

At first, we show

a.s. (162)

for , under Condition 4.
From Lemma 2 and

(163)

we have

a.s. (164)

for . We have, therefore,

a.s. (165)

for . On the other hand, from Condition 4, v), is a
strong consistent estimator of , that is, , almost
surely for . We have, therefore,
almost surely and almost surely, where

is the term such that almost surely. when
for .

Therefore, from (165), if the equation

a.s. (166)

for is proved, then the proof is completed.

9This means that the difference of code lenghts between the MDL code and
the Bayes code does not diverge to1.
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At first, we shall estimate . From Taylor ex-
pansion, we have

(167)

for some lying between and .
From Condition 4, v) and vi), we have

a.s. (168)

On the other hand, from

a.s. (169)

and (110), we have

a.s. (170)

because , almost surely. We have, therefore,

a.s. (171)

Next, we show the order of . From
Taylor expansion, we have

(172)

for some lying between and . From Condition
4, vi), we have

a.s. (173)

where .
On the other hand, from identical discussion with (168), we

have

a.s. (174)

from

a.s.

Accordingly, from (172)–(174), we have

a.s. (175)

because

a.s.

which is given by Condition 4, ii) and v), and
almost surely.

From Condition 4, ii) and v), we have
almost surely. We have, therefore,

a.s. (176)

from (171) and (175). Then we have

a.s.

(177)

At first, we consider the case . In this case,
is satisfied. Then we obtain

a.s. (178)

for from Condition 4, vi), where is some posi-
tive constant.

We have, therefore,

a.s. (179)

for when .
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When , the equation

a.s.

(180)

is satisfied from Condition 4, vi) and the definition of . We
have, therefore,

a.s. (181)

for when from (177). Then (166) is
satisfied for , and (162) holds.

From Bayes theorem

(182)

and (162), we have

a.s. (183)

for because is finite. This means (114).

ACKNOWLEDGMENT

The authors wish to thank one of the anonymous referees for
the valuable comments that led to the improvement of the first
version of this paper. The authors would also like to acknowl-
edge M. Nakazawa, Dr. M. Kobayashi, and all the members
of Hirasawa Laboratory and Matsushima Laboratory for their
helpful suggestions and discussions to this work.

REFERENCES

[1] H. Akaike, “A new look at the statistical model identification,”IEEE
Trans. Automat. Contr., vol. AC-19, no. 6, pp. 716–722, 1974.

[2] J. M. Bernardo and A. F. M. Smith,Bayesian Theory. New York:
Wiley, 1994.

[3] R. E. Blahut,Principles and Practice of Information Theory. Reading,
MA:: Addison-Weley, 1987.

[4] B. S. Clarke and A. R. Barron, “Information-theoretic asymptotics of
Bayes methods,”IEEE Trans. Inform. Theory, vol. 36, pp. 453–471,
May 1990.

[5] , “Jeffreys’ prior is asymptotically least favorable under entropy
risk,” JSPI, vol. 41, pp. 37–60, 1994.

[6] B. S. Clarke, “Asymptotic normality of the posterior in relative entropy,”
IEEE Trans. Inform. Theory, vol. 45, pp. 165–176, Jan. 1999.

[7] C.-F. Chen, “On asymptotic normality of limiting density function
with Bayesian implications,”J. Roy. Statist. Soc. B, vol. 47, no. 3, pp.
540–546, 1985.

[8] W. Feller, An Introduction to Probability and Its Applications. New
York: Wiley, 1957, 1966, vol. I–II.

[9] T. S. Ferguson,Mathematical Statistics, A Decision Theoretic Ap-
proach. New York and London: Academic, 1967.

[10] M. Gotoh, T. Matsushima, and S. Hirasawa, “A generalization of
B.S. Clarke and A. R. Barron’s asymptotics of Bayes codes for
FSMX sources,”IEICE Trans. Fundamentals, vol. E81-A, no. 10, pp.
2123–2132, 1998.

[11] , “Almost sure and mean convergence of extended stochastic
complexity,” IEICE Trans. Fundamentals, vol. E82-A, no. 10, pp.
2129–2137, 1999.

[12] J. A. Hartigan,Bayes Theory. Berlin, Germany: Springer-Verlag,
1983.

[13] P. Hall and E. J. Hannan, “On stochastic complexity and nonparametric
density estimation,”Biometrika, vol. 75, no. 4, pp. 705–714, 1988.

[14] T. S. Han and K. Kobayashi,Mathematics of Information and Coding
(in Japanese): Iwanami Syoten, 1994.

[15] E. J. Hannan and B. G. Quinn, “The determination of the order of an
autoregression,”J. Roy. Statist. Soc. B, vol. 41, no. 2, pp. 190–195, 1979.

[16] C. C. Heyde and I. M. Johnstone, “On asymptotic posterior normality for
stochastic process,”J. Roy. Statist. Soc. B, vol. 41, no. 2, pp. 184–189,
1979.

[17] S. Itoh, “Application of MDL principle to pattern classification prob-
lems” (in Japanese),J. JSAI, vol. 7, no. 4, pp. 608–614, 1992.

[18] T. Kawabata, “Bayes codes and context tree weighting method,” (in
Japanese), IEICE, Tech. Rep. IT93-121, 1994.

[19] A. S. Martini and F. Spezzaferri, “A predictive model selection crite-
rion,” J. Roy. Stasist. Soc. B, vol. 46, no. 2, pp. 296–303, 1984.

[20] T. Matsushima, H. Inazumi, and S. Hirasawa, “A class of distortionless
codes designed by Bayes decision theory,”IEEE Trans. Inform. heory,
vol. 37, pp. 1288–1293, Sept. 1991.

[21] T. Matsushima and S. Hirasawa, “A Bayes coding algorithm for Markov
models,” IEICE , Tech. Rep. IT95-1, 1995.

[22] D. S. Poskitt, “Precision, complexity and Bayesian model determina-
tion,” J. Roy. Statist. Soc. B, vol. 49, no. 2, pp. 199–208, 1987.

[23] G. Qian, G. Gabor, and R. P. Gupta, “On stochastic complexity estima-
tion: A decision-theoretic approach,”IEEE Trans. Inform. Theory, vol.
40, pp. 1181–1191, July 1994.

[24] J. Rissanen, “Modeling by shortest data description,”Automatica, vol.
46, pp. 465–471, 1978.

[25] , “Universal modeling and coding,”IEEE Trans. Inform. Theory,
vol. IT-27, pp. 12–23, Jan. 1981.

[26] , “A universal prior for integers and estimation by minimum de-
scription length,”Ann. Statist., vol. 11, no. 2, pp. 416–431, 1983.

[27] , “Universal coding, information, prediction, and estimation,”IEEE
Trans. Inform. Theory, vol. IT-30, July 1984.

[28] , “Stochastic complexity and modeling,”Ann. Statist., vol. 14, no.
3, pp. 1080–1100, 1986.

[29] , “Stochastic complexity,”J. Roy. Statist., Soc. B., vol. 49, pp.
223–265, 1987.

[30] , “Fisher information and stochastic complexity,”IEEE Trans. In-
form. Theory, vol. 42, pp. 40–47, Jan. 1996.

[31] C. Schwarz, “Estimating the dimension of a model,”Ann. Statist., vol.
6, pp. 461–464, 1978.

[32] R. Shibata, “Consistency of model selection and parameter estimation,”
Appl. Probab. Trust, pp. 127–141, 1986.

[33] J. Suzuki, “Some notes on universal noiseless coding,”IEICE Trans.
Fundamentals, vol. E78-A, no. 12, 1995.

[34] J. Takeuchi, “On the convergence rate of the MDL estimator with respect
to the KL-divergence” (in Japanese), inProc. 16th Symp. Information
Theory and Its Applications, 1993.

[35] , “Characterization of the Bayes estimator and the MDL estimator
for exponential families,”IEEE Trans. Inform. Theory, vol. 43, pp.
1165–1174, July 1996.

[36] H. Tsuchiya, S. Itoh, and T. Hashimoto, “An algorithm for designing a
pattern classifier by using MDL criterion,”IEICE Trans. Fundamentals,
vol. E79-A, no. 6, pp. 910–920, 1996.

[37] C. S. Wallace and P. R. Freeman, “Estimation and inference by compact
coding,”J. Roy. Statist. Soc. B, vol. 49, no. 3, pp. 240–265, 1987.

[38] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context-tree
weighting method: Basic properties,”IEEE Trans. Inform. Theory, vol.
41, pp. 653–664, May 1995.

[39] K. Yamanishi and T. S. Han, “Introduction to MDL from viewpoints of
information theory” (in Japanese),J. JSAI, vol. 7, no. 3, pp. 427–434,
1992.


