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An Analysis of the Difference of Code Lengths
Between Two-Step Codes Based on MDL Principle
and Bayes Codes

Masayuki Goto Member, IEEEToshiyasu Matsushim&ember, IEEEand Shigeichi Hirasawdellow, IEEE

Abstract—in this paper, we discuss the difference in code lengths [20], [23]. Therefore, if we can assume the same prior distribu-

between the code based on the minimum description length (MDL) tjon, itis clear that the Bayes code is not worse than the two-step
principle (the MDL code) and the Bayes code under the condition code based on MDL principle (MDL co#lg[29].

that the same prior distribution is assumed for both codes. It is Th " f th des h b tudied ind
proved that the code length of the Bayes code is smaller than that € properlies of these codes have been studied inaepen-

of the MDL code by o(1) or O(1) for the discrete model class and dently (see [4], [5], [13], [18], [20], [24]-[29], [34]-[36]). The

by O(1) for the parametric model class. Because we can assumemain interest here is a quantitative evaluation between the MDL
the same prior for the Bayes code as for the code based onthe MDL ¢ode and the Bayes code. For the same prior, the code length of
principle, it is possible to construct the Bayes code with equal or the Bayes code is a lower bound on that of the MDL code for

smaller code length than the code based on the MDL principle. . .
From the viewpoint of mean code length per symbol unit (com- any data sequence [29], since the Bayes code is the Bayes op-

pression rate), the Bayes code is asymptotically indistinguishable timal. Moreover, both of these two codes are asymptotically op-

from the MDL two-stage codes. timum [4], [14]. The analyses on the MDL and the Bayes code
Index Terms—Asymptotic normality, Bayes code, minimum de- from the wewpqlnt of the estimator also have been studied [35].
scription length (MDL) principle, universal coding. However, the difference between the code lengths has not been

analyzed directly or quantitatively.
In this paper, we analyze the difference of the code lengths
between the MDL code and the Bayes code for the discrete, the
HE minimum description length (MDL) principle which parametric, and the hierarchical model classes, and show that the
was proposed by J. Rissanen has been studied [24]-[29e length of the Bayes code is smaller than that of the MDL
not only in the universal source coding but in the areas of datade byo(1) or O(1) for the discrete model class, and ©y1)
analysis, learning theory, and the statistical model selectitor the parametric model class. For hierarchical model classes,
[13], [14], [17], [36]. the difference of the code lengths between the MDL code with a
We discuss two-step coding based on the MDL principl@ixture over parameters but a selection for the model order and
Since coding based on the MDL principle is the method mithe Bayes code which uses a mixture over both parameters and
imizing the total description length of the data and a prob&odels iso(1). The essence of the analysis for the parametric
bilistic model, the MDL criterion selects a particular modelnodel class is that the posterior probability density of the pa-
and is closely related to Bayesian statistics. This is because tageter on Bayesian inference satisfies asymptotic normality.
MDL supposes the prior distribution implicitly and is essentialljgecause we assume the same prior for the Bayes code as that of
equivalent to the maximization of the posterior probability. the MDL code in practice, it is possible to construct the Bayes
On the other hand, Bayes coding [4], [20], whose code lengghde with equal or smaller code length than the MDL code.
is also called stochastic complexity [23], [29] is the methodlowever, from the viewpoint of mean code length per symbol
which uses the mixture of all models explicitly over a modalnit, that is, compression rate, the Bayes code is asymptotically
class for coding function. Recently, efficient algorithms to calndistinguishable from the MDL two-stage codes.
culate the mixture probability of the data sequence have been
reported for the FSMX model class [18], [21], [38]. The Bayes Il. PRELIMINARIES
code is given by the Bayes optimal solution for the code length

I. INTRODUCTION

In this paper, we deal with the discrete, the parametric, and
the hierarchical model classes. Lat be a discrete source
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on A" by X™. The source emits a data sequence with trder the code length [20]. The Bayes code which is the Bayes op-

probability distribution timal solution is given by the code using the mixture probability
. . of all models. The code length of the Bayes cddyg, .. (z") is
P(z") =PY (X" =2"), 2" ea” given by
vyhich was p_reviously un_knownP_(-) is a probability func- Lgayes ") = —log Z 2| \)P ©)
tion andf( -) is a probability density function. Throughout the Nea

paper, we suppose that the logarithm basedad the measure
of the code length is in nats.

For ak x 1 matrix vector of lengthk, =, and ak x k& matrix
J, we define the normfiz|| = (z¥'2)*/? and||z|% = 27 Jz. We consider the parametric model clds3(-|6%)|6* € ©F}
Here,z? is the transpose of vectar. And, for the some dif- which has &-dimensional continuous parameter
ferentiable functiony(6*) with respect td:-dimensional vector

B. The Parametric Model Class

6%, we define that 6% = (6, 6, ..., 6;)7.
dg(6%) q 2 g(6%) 6* is a continuous vector in the parameter sp@tewhere©®*
oo 2" Per(agr)T is a compact subset &*. Thatis,¢* € ©F ando* ¢ R*. The

data sequence™ is derived from the true distributio®*( - ).

are thek x 1 matrix ha\,mgaﬂ(@ ) astheith elementand thexk We do not assume that the model class includes the true distri-
bution P*( - ).

Since#* is a continuous vector, we cannot encatieas is.
In the MDL code, the parameter set is quantized into count-
able cells and a quantized paramétewhich is the representa-
tive point of a cell is encoded. Lé&* be the set of all quan-
. tized parameter value®®, which may depend on. That is,
A. The Discrete Model Class 6% € ©* whenz" is encoded. Number each quantized cell in

Let A be amodelin a discrete and finite model class € A.  the parameter space. L@f , be the set of all parameter in the
That is, A is a countable set. The data sequentes emitted jth quantized celll = 1, 2, ...). We assumeJ,©* , = ©F

from the true distributio?*( - ). We do not assume in analyasand@k e @k = ¢,i # j. Leta, ;(8%) be the quantized

that the model class includes the true distributior(- ). Let i of thejth side of the cell represented BY. The number

P(a"|A) = P(X™ = a"|) be the probability function for the ¢ yhe celis isO(1/ max T152 cn, ;(8%)). Then, it is possible

model A, and letC'(}) be the_ description Iengt_h for describing, oo ngtryct the prefix code which describes the quantized pa-
A. Then, we can encodé€® using a modeh, and its code length rameterd* by the length— log f(?’“) ~3 loga j(?k) [23]
J n, ’

fo%';/e;g %;rleofii(g\'/?r]zg()\). The code length of the MDL | 0.0 (9 is the prior density of the paramet, satisfying
' ' Jor F(6%)d6* = 1. We assume thab? satisfies

@1 an ;0% =
> HJ

gk E@k

matrix having aé’fae) as thei-jth component, respectively. We

also denote them l:g/(e’“) andg” (6%), respectively. For an area
A C R¥, volume is denoted bly4|, whereR* is k-dimensional
Euclidean space.

I)\nelll\l{— log P(z™|A\) + C(\)}.

Here, we assume th3t, ., ¢~ = 1[23]2 Then, we can

regardP()\) = ¢~ as the prior probability of the modal Therefore, we can interpref(6%) [T, o, ;(6*) as the prior
Then the code length of the MDL codky;,; (z™),2 is defined probability on®k T

by* Here, we must consider the method for the quantization of
Lo (e™) = min{— log P(z"|\) — log POV} (2) the pa(ameter space intq ceII;, and an a§ympt9tic method gives
' a solution. The asymptotic optimal quantized width for the code

On the other hand, if the prior probabilify(\) is assumed, length is given by

we can construct a Bayes optimal solution for the loss function

=3 1
AF 3, e > 1, then the prefix code does not exist, else if H o, (07) = k Y “)
Yea ® ¢~ < 1 then it causes the loss of the code length. J=0 V' y/det 1(6%)
3The superscripk of Ly, ;. (™ ) means the code forthe discrete model class. )
Latter we gelflnle the code length of the MDL cod€.,; (z™), for the para- Henceq 1(9") O(1/+/n) [14], [24], [35], [37], [39], using
metric model class. the asymptot|c normality of the maximume-likelihood estimator.
“The MDL estimatoriyp.. is given by HereI(#*) is the Fisher information matrixdefined by
bt = fgxmm{—log.,P z™|A) —log P(\)} L — 1 1 - 92 log P(ank) -
= arg max P(A|z"™). (@)} ( ) - nl—ILlo n 1 89k(89k)T

AEA

Therefore, the MDL principle is equivalent to choose the model having the maand E5 { -} is the expectation unde?(-|6%).
imum posterior probability for the discrete model class [30], which is the Bayes
optimal solution for the)-1 loss function. SLater, we will define another information matrix (¢%) for analysis.
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Then, the code length of the MDL codé;'{DL(a:") isgiven  The MDL Code TypelAt first, we consider the MDL code

by which uses an operation of parameter quantization to describe
3t both a quantized parameté’?m and a discrete labeh. Sim-
Lypr(z") ilarly, with the parametric model class, the code length of the
F0%) MDL code with parameter quantization is given by

= min { —log P(z"|6%) — log — (" (6) G
gkcok 2k [ det T(9% Ly (@™) = min
\/_ ( ) MDL meM, gkm E@I\;m

7

On the other hand, the code length of the Bayes code

LY....(z") is given by { —log P(a"m, 8"™) — log f(8""|m)
k ’ . . .
Lbues(@") = —log | P(a"(69)1(6%) d6*  (7) .
. - —log P(m)
where the integral is calculated over the paramete®$et4], \/ﬁk” det (6" |m)
[5], [20]. Equation (7) is the Bayes optimal decision for the code (10)
length loss function (the logarithmic loss function) for the para- . . _
metric model class [20]. where®k is a set of all quantized parameter valéés of a
modelm, andI(#%~|m) is the Fisher information matrix of a
C. The Hierarchical Model Class modelm defined by
We consider the (partial) hierarchical model class X 1 9? log P(X™|m, §%~)
16" |m) = nh_I)r;o EEQ {— 6% (9% )T } . (11)

{P(-|m, 6*)|m € M, 6%~ € @k},
_ _ . _ ~ Here, Ey is the expectation undeP(X"|m, §*=). That is,
m is a discrete label for models in the discrete and finitgk.. ¢ ©k~ whena” is encoded and we assume
model classM. That is, M is a finite countable set. If

each modelm has ak,,-dimensional paramete¢*~ = Z f(@k”|m) ! =1.

(67, 65™, ..., ;)T in a parameter spag®®~ which is a Ficok Sy Jdet I8k m)

compact subset dR*~, thenm specifies a parametric model )

class. The MDL Code Type2Second, we define the MDL code

Let H*~ be the class of the probability distribution of thevhich uses the mixture for parameter and selects only a discrete
modelm. Then the (partial) hierarchical model claksis de- |abelm

fined by Ly (+") = min {~log P(a"m) — log P(m)} ~ (12)
mcC

H = Uy H* (8)

—log P(z"|m) = —log / P(z"|m, %) f(6% |m) do*.

We also denote the model class by grm 13

H = {P(|m, §")|m € M, " € ©F}. : o
The latter is the minimization of the Bayes code for the param-

Here the nested structure eter and excludes the quantization of the parameter.
% % k The Bayes CodeOn the other hand, the Bayes code is given
HEm C HEme CH s C - 9) by

may be satisfied fofn,, ms, ms,... € M andk,, < kn, < . ‘ . o
km, ---. This nested structure may be linear order or partizngayes (") = _1032 /mm P(a"[m, §°)
order? m
Koy K
Let— log P(m) be the description length to describe the label p(0° |m)p(m) d6".  (14)

m. We assume the prior distributiof(6™~|m) on ©". For yere the integral is calculated over the parameter spéce
the hierarchical model class, two types of MDL codes can be g we have mentioned above, the Bayes code is characterized
defined. using the mixture distribution over all models for the coding
6The mixture code may be also defined by the mixture for the quantized galnction! In the following section, we analyze the difference of
rameters which is given by the code lengths between the MDL code and the Bayes code for
o1 the discrete, the parametric, and the hierarchical model classes.
—log Y P(x"[6")£(8") [] (")
ok =0 [ll. ANALYSIS FOR THEDISCRETEMODEL CLASS
However, since the prior density is assumed, the Bayes code as Bayes optimgh this section, we analyze the difference of code lengths,
solution is given by (7) which is the limitation of the above equation a ; :
0,(8%) — 0 [23]. t2) _and (3), for the d|$(_:re'Fe modfl class. The data sequence is
7For example, the finite Markov sources have linear order structure. TRENItted from the true distributio”( - ) and we do not assume
FSMX sources have partial order structure. that P*( - ) exists in the model class.
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A. Assumptions B. Examples for Model Class
Let Dy be the set ofA minimizing D*(P*||Fy), where  Example 1 [Multinomial Independent and Identically Dis-
D*(P*||Py) is given by tributed (i.i.d.) Source]: Consider the multinomial i.i.d. source

with & = {0, 1, 2, ..., 3}. Let p; be the probability of the

1 PrX" _
D*(P*||Py) = min — E"log % symboli, i € X andps = 1 — Zf:ol p;. Then the vector
nTee (XA p° = (po, p1, - ps—1)7 specifies a probabilistic model.
P*(x") Let A; mean

P’B()\l) = (po(A1), pr(A1)s - p,@—l()‘l))T
where E* is the expectation unde®*(-). Minimizing

D*(P*||Py) is equivalent to minimizingd * (), where where
0 < po(A1), pr(A1), ..., pe—1(A1) <1
H*) = lim LB {—log P(X"|N)}.  (16) o) ;1) s ()
noee n In the same way, lek,. A3, ... be
We denote a\ minimizing D*(P*||P\) asA*, which may not s -
be unique. That ig,Do| > 1. This is so because there may exist p"(A2) =(Po(A2), p1(A2), - ... pp—1(A2))
A1 andAz suchthat(-[Ar) # P(-|A2) andH* (A1) = H*(Az). P’(As) = (po(X3), p1(Xs), -, pa—1(A3))"

We can also show a case in whiéh{-|A;) = P(-|\2), which
leads toH*(\1) = H*(\2). In these casesDy| > 2if Ay
and A» minimize H*(\). We call \* the optimal model. Let
Dy C A be the set of not minimizing D*(P*|| Py). That is,
M = Do U D1.

We assume the following condition which will be needed in
our derivations.

Thus, we can define the model class tobe= {\;, Ao, ...}
The true probability is denoted y* = (¢, p3, ..., P5_1)7,
.wherep? is the true probability of the symbal The optimal
modelA* € A may not be unigue in this case.

For example, wher® = 2, we may define discrete models

Condition 1: such as
D Dol 2 1. P(0) = (1/10. 1/10)"
_|_|.) Forvi e A, P(A) > 0. P20%) = (1/10, 2/10)%
iii) (The strong law of large numbers) FgrA € A P2(0\s) = (1/10, 3/10)7, ..., p* (A7) = (1/10, 8/10)"
1
— = log P(z"|\) — H*(\) a.s. @7 p*(ks) = (2/10, 1/10)7, ..., p*(As6) = (8/10, 1/10)".
n
Thatis, forv A € A andve > 0 Then the model class i§ = {A1, Az, ..., Asg}. If
1 . Po=ri=p3=1/3
- log P(z"|\) — H* (V)| < € (18)  then
is satisfied for all sufficiently largex with probability H(As) = H(A19) = H(A25)
one. O and
We also denote almost sure convergence as, for example, Do = {A1s, A1g, A2s}
1 N . where
E{— log P(z™|\)} — H*()\), a.s. P2(Os) = (3/10, 3/10)
or p*(A1o) = (3/10, 4/10)
_1 log P(z"|\) — H*(A\)| < € a.s, whenn — oo. and
n p*(A25) = (4/10, 3/10).
If (17) is satisfied, then For the multinomial i.i.d. source, the strong law of large
1 P(z™|\) . number is satisfied [8]. That is,
— log ————% — D*(P\||P\,) as. 19 ;
n og P(z7[A2) - (Px || Prz) (19) % —pt as. (22)
asn — oo is satisfied fov A, A2 € A, where asn — oo wheren; is the number of times the symbiappears
P(X" in ™. On the other handopg P( ™| \) is given by
D*(Py,||Pr,) = lim E*log w (20)
nibo P(X"As)
log P(x Z n; log p; (A (23)
BecauseD*(Px-||P) > 0forV A € Dy, then we have prd
n From (22), we have
M — 0 a.s. (21)
Pz |A%) 1 n
—— log P(a"|\) — Zp7 logp;(A\) as.  (24)

whenn — oo.
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whenn — oo forV A € A, where We may define model clasa in the same way as in Ex-
j ample 1. That is, the model may be defined by
=—Y pilogpi(N)
=1

— piJE{l/Z, 1/3,...}
This model class satisfies Condition 1, iii). ) AN e
We have, therefore andlog P(a"|A) is given by

n\* n
lim log ( ) P,) as. (25) log P(«"|A) = an i logpi,j( (31)

where D*(Px-||Pa) is grven by

8

: A
=> pflogp( )

=0

=D*(P*||Py) — D*(P*||Px).  (26) — > q:.p}jlogpi () as. (32)

On the other hand)*(P*|| Py) — D*(P*||Px-) > 01is satisfied i " . .
for all \* € Dy and all\ € D; by definition. g Whenn — co. This model class satisfies Condition 1, iii).

We have, therefore,

Therefore, we have

L. nyy Ny Mg
- log P(z™|A) —Z i log p; ;(A)

%]

Example 2 (Finite Ergodic Markov Source)fe consider a

finite ergodic Markov source o’ = {0, 1, 2, ..., §}. Let lim 10g Pla"|\) = D*(Px-|P\) a.s. (33)

pi.; be the probability of the symbalat thejth states;, where n—oon ~ Pa™A)

¢ € Xandj =0,1,..., 5. Letg,, be the stationary proba-\yhere p*(P,. || Py) is given by

bility of the statesj,wherej =0,1, ..., .5 whichareuniquely

decided byp;, ;,¢ € X andj = 0, 1 , 5. Those of modeh s Iy

are denoted by; ;(\) andqu()\). Let a model be F(Pas||Py) = Z Z )- (34)
,': =0

)\I i,')\":0,...,3—17":07“.75 o
e I f ’ J D*(P*||Py)— D*(P*||Py-) > 0is satisfied foiV \* € Do and

and the modeh* VYA€ D O
A =Api Al =0,.... 6-1,7=0,..., 5} C. Main Results for the Discrete-Model Class
where\* € Dy. First, we show the following lemma.
We assume the initial state is known. gy, ..., ns be the . )
numbers of times the states . . . ss appear Imn respectlvely Lemma 1: Under Condition 1, the asymptotic code length of
Letno j, nij, ---, ng,,; be the numbers of times the symbolghe Bayes code is given by
0,1,..., 78 appear conditioned by the statgein data sequence . 2" AF) PO +
", respectively. Thatisy = 3" n; andn; = 3, n, ;. The Lijayes(+") = —log Z AIP(AT) — o™ (1) as.
true probability of the symbalat thejth states; is denoted by ATeDo (35)
P =0,....,5-1,7=0,..., 5 wherep ; is given by whereo™ (1) is the positive term such that (1) — +0, a.s.,
whenn — .
Pi; = ,}E{}o ; E"N; ;. (@7) Proof: From the definition ofD,, we have
That is, \ Z
|- . LBa es( n) I—lOg P($n|)‘*)P()‘*)
{pz,J|L:077ﬁ_17J:0775} y A €Dqg
is given b
gveny N + > P(x"|)\)P()\)}
arg {Inin} lim E* Z —L logp; ; (28) ACDy
pijy MO0 — N
7,7 IOg Z |)\+ +)
where N; ; are random variables representing the numbers A €Dg
of times each symbol$, 1, ..., 3, appear conditioned by "
the states;;, j = 0, ..., S in the random variable&™. The /\621;1 PN P(A)
stationary probabilities on the states calculatedphy: are —logq1+ S P PO (- (36)
denoted byg; --- g;.. In this case, it is known that the strong A EDq
law of large number is satisfied, that is,
no Because\ is finite and 77k — 0, as., whem — o for
% 2S (29) allA* € Dy and allx € D, #rom (21), we have
N5 " P A
L —pr; as. (30) /\Cz;jl (@™ NP
nj =o0T(1) as. (37)

2. P A P(ar)

whenn — oo. A*E€Dq
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Therefore, we have asymptotically, that is\ = \* for all sufficiently largen with
" probability one (strong consistency, see [15] and [32]). Then we
2, PlPQY can substitute\ for A* whenn — co. Therefore, we have

AEDy
log< 1+ — —~ ¢ =0"(1) as. (38)
yop, P XPO) _log P(ja™) = o*(1) ass. (45)
Thus, the proof is completed. U The proof is completed. O

Lemma 1 is used in the proof of the following main results. In This theorem implies that the difference of the code lengths
some cases, we can assume that two or more identical modgigveen the MDL code and the Bayes code convergesiteen
are not included in the model class and the optimal modeltige optimal model is unique. Then, the code lengths for both
unique. Wher)Do| = 1, the code length is given by codes are asymptotically equal.
Next, we consider the cas®y| > 2.

LR, o (z™) = —log P(z"|\*)—log P(A\*)—0oT(1) a.s. (39)
Theorem 3: Under Condition 1, if Dg| > 2 and

Bayes
Next, we show the key theorem in order to analyze the differ- i e ..
ence of the code lengths between the MDL codes and the Bayes ~ P(z"|A]) = P(2"[A3),  for VAL, A3 € Do

codes. ) i
then, the relation between (2) and (3) is

Theorem 1. For the same prior probability, the relation be-

tween (2) and (3) is given as follows: LypL(z™) = L3, e (z") + OT(1) ass. (46)
LypL(z™) = Liayes(z™) — log P(\z™). (40) whereO*(1) is the positive term such that* (1) — C, a.s,

~ whenn — oo, and the positive constant is given by
Here, A represents the model which maximizes the posterior

probability P(A|z™). ol Jmax P(A") -
Proof: From Bayes rule S POVv)

P A P(A) = P(A[z")P(z")
Proof: From the equation

(40) is obviously obtained. O
—log P(\|z™) = —log P(z™|\)—log P(\)+log P(z™) (48
This theorem shows that the code length of the Bayes code is g PA") g P ) ~log P(A)+log P(a") (48)

smaller than that of the MDL code by the factelog P(S\|a:") and Lemma 1, we have

on the same prior, and the Bayes code is effective for the finite

length of the data sequence. Next, we consider the order of the,, P(\z") = —log Px" |\ P(N) +ot(1) as.

term —log P(\|z™). 2 P A )P(A)
Usually, the optimal model* is unique. First, we show the AreDo

convergence rate of the difference of the code lengths in this

case.

(49)

From (43), we have- log P(A|z™) — 400, a.s., folv A € Dy.
Theorem 2:Under Condition 1, ifA* is unique, that is,  On the other hand, fok* € Dy, we have
|Do| = 1, then the relation between (2) and (3) is given by

P
—log P(A|lz") = —log —<—F5~+~ +o(1) as. (50)
LﬁmL(x") = Lgayes(xn) +0%(1) as. (41) )\*;D P(X*)
whereo™ (1) is the positive term such that (1) — 40, a.s., 85 pacause
n — Q.
Proof: From P(z™|AT) = P(z™|A5),  forV AL, Ab € D.
P(Alz") o< P(z™|A)P(X) (42)  The first term of the right-hand side (RHS) of (50) is inde-

pendent of the sample sizeand dominates the equation. Then,

and (21), we have the code length of the MDL code in this case is given by

PAlz")

R Y D A + 1 S. 4 A ny _ A ny _ - A *
P()\*|xn) 0 ( ) a.s ( 3) LI\'TDL(‘T ) LBayes(‘T ) 108 )\I}lerl“go P()‘ )
for v \* € Dy andV A € D;. Therefore, we have +log{ Z P()\*)} +o(l) as. (51)
P(\|a™) =1-0o™(1) as. (44) e

So the following equation is obtained:
Hence, the modek which maximizes the posterior proba-

bility P(|z™) almost surely corresponds to the true mokfel Ly (™) = Layes

(z")+ 0% (1) as. (52)
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where O*(1) is the term such thab*(1) — C, a.s., when
n — oQ.
From Condition 1, ii), we have

_1og;péﬂj%<0 P(X\") > —log )\; P(X\).
Dy

(53)

Therefore, the constardt' is positive, and the proof is com-,44s forAf, Ay € Dj. Neverthelesslo

pleted.

This result may be interpreted as follows. The model selection
by the MDL principle for the discrete model class is essentially'\ \
equivalent to that of maximization of the posterior probability. Ifatisfy (54) or (55). See [8].
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P M)
Pz [Xz)

Becauser;, — oo, a.s., ifp; (A1) # pi(A2) thenlog
+o0.
Of course,
1. P(a™A])

Zlog =% — 0, a.s.
n

P g) &7

P@E"[A]D
S P(a;n|,\§)

diverges almost surely with an order

— 0, a.s.
P(a"|AD)

does not holdlog Py
2

((y/ =221). Similarly, finite ergodic Markov sources also
O

A* € Dy is unique, them\* will be asymptotically obtained by  Theorem 4: Assume Condition 1. IfDo| > 2 and

maximization of P(A|z™). However, if there are modelg and
A3 satisfyingA; # A3, Af, A5 € Dy, andP(:|A}) = P(:|\%),
then the model which has maximum prior probability ik
will be asymptotically selected by maximization 8 A|z™).

P(z™|A]) # P(2"|A3),  forVAL, A7 € Do

and (54) or (55) hold, then the relation between (2) and (3) is

That is, when the optimal model is not unique, the posterigiven as follows:

probability of an optimal modeP(\*|z™) does not approach

so that uncertainty asymptotically remains for model selection.

This uncertainty in the model selection makes the code length

of the MDL code larger.

On the other hand, the Bayes code uses the mixture
>, P(z”|A)P(A). Consider a case such that there is a model

A3 satisfying

P(AT) = P(1A2), AT # A%, AL Az € Do,

If we define \* as
PO = Y P(\)

M EDqg
and

P(a"|A7) = P(a"[AT)

for A7 in Dy, removeY A" satisfying\* # A7 and\* € Dy,

and construct the Bayes code for such a reconstructed model

LQTDL(‘Tn) = Lgayes(xn) + 0+(1) a.s. (58)
Proof: Since (54) or (55) hold, we have
P(Nx ) =oT(1) as. (59)
P(A|z")

for A#£ A,V A€ A. So analogy with Theorem 2 leads to (58).

IV. ANALYSIS FOR THEPARAMETRIC MODEL CLASS

In this section, we discuss the difference between the code
lengths from (6) and (7), for the parametric model class

{P(-|6%)|¢* € ©F}. The data sequence” is emitted from
P*(z™) and we do not assume th&t ( - ) is in the model class.
We define the information matrik*(6*) as follows:

{_a2logP(X"|9k)} (60)

I'#")y= lim —FE 05 (00T

n—oo 1

class, then its code length is asymptotically equivalent to that
of the original Bayes code and we can regafdas the unique in which E*{-} is the expectation undeP*(-). I*(8**) =
optimal model. Thus, the code length of the Bayes code is nk**) is not generally satisfied. From the definitiéh(6**) =

made larger even if there exist models # A3, A7, A3 € Dy,
andP(-[A7) = P([A3).

Next we consider the case that there are modégland A3,
satisfyingP(-|AT) # P(-|A3) and AT # A3, AT, A\ € Dq. For
most practical model classesHf-|A]) # P(:|A3) for A\ #£ A3,
AL, A5 € Dy, then

PG
log <~ — +oo as (54)
P(zn[A3)
or
P(z"|AD)
log < — —o0 as (55)
P(zn[A3)

Example 3 (Multinomial i.i.d. Source)Again consider Ex-
ample 1. Sincé* — p;, a.s., we have; — oo, almost surely.
On the other hand, for all;, A\» € Awe have

(56)

I(6%*) whenP*(-) € {P(-|6%)|6% € ©*}. However, for most
of practical model classes for source codiht(§**) = I(6%*)
is satisfied even iP*( - ) # P(-|6**) becauset’ is discrete. See
Examples 4 and 5.

We also defined*(6*) as follows:

H*(6%) = lim E E*{—log P(X™|6")}. (61)
n—oo N
Let 6% be the optimal parameter given by
68* = arg min H*(6"). (62)

ok

We denote the maximume-likelihood estimator and the max-

imum posterior estimator giveri* by 6% andé*, respectively,

6% = arg max log P(z"|6%) (63)
gk

6* = argmax log f(6%|z™). (64)
ok
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A. Assumptions Because

pefining o F(8*]a") o+ log P"I64) + - (6")

Bs(6") = {6" € OM|6* — 9**|| < 5} = L iog Pl
n
we assume the following conditions for the parametric modfeolr all 6%

S € ©F, and
class and Bayesian inference.

1 . vk
Condition 2: ——log P(z"|0*) — H*(6*) a.s.

i) (Existence ob**) The function— H*(#*) is a unimodal . _ o
function with a maximum point in the interior ¢dk. uniformly for all 6* € Bs(6%), if 6* — 6*, a.s., is not satisfied,
That is, the optimal parameté#* uniquely exists in the SO (68) is also not satisfied. Therefore, (68) metins: 6** a.s.
interior of ©F. From Condition 2, i), iv), and v), the likelihood function

i) (Smoothness of class) The Fisher information matrixpn(aj i ? and the Ipostgnor dlefnsny. functiof(9*|a™) given
1(6%) satisfies) < Co < det I(6%) < oo for ¥ 6* € OF ™ are almost surely unimoda unctions wh;enf 0.
' Here, we just show the asymptotic normality of the max-

where C, is a positive constant. Whe#* = 6%+, . o ) N . : e

I(65*) = I*(6**). Moreover,det I(6%) anddet I*(6%) imum-likelihood estimator since it is used in the dlsqus§|on in

satisfy ' ' mean code length of the MDL codes [14]. However, it will not
be directly used in the proof of the results in this paper.

H Jdet I(6%)

‘ < oo (65) Condition 3: The distribution of* = \/n(6% — 6**) con-

6% verges to a normal distribution with mean zero and covariance
O des I*(6%) matrix {1(6**)} ~!. Hence, in particular, if?} is an arbitrary
HT ‘ <00 (66) k-dimensional rectangle, its probability induced Byz"|6**)
satisfies
for vo* € ok, Pt e R = S Pif|6*)
iii) (Smoothness of the prior) Fat6* € ©F, f(6%) > 0and n* CRY

f(6%) is three times continuously differentiable fé.

That is, we have _, VdetI(0%) / o2 e di®.
n* CR¥

(27 )*/2
’ k
>N % < cp(6%) (67)

i=0 j=0 =0 J O

(71)

wherec,(6*) is a finite constant depending only 6h. Remark 1:_l\_lext we co_nsiQer _Conditionlz, iii). A_s an ex-
) . . L _ample, the Dirichlet distribution is the conjugate prior for the
iv) (Existence of estimators) The likelihood function,, inomial distribution class and is obviously three times con-

P(z"16%) given " is unimodal or monotonic With {16y differentiable. This prior is also useful for the Markov
respect t@@” € ©F for V2™ € A™. The posterior density |\ Jq| [21]. a

function f(6%|z™) has a unique maximum i®* for
Yz € X™. That is, both of the maximum-likelihood Remark 2: We consider Condition 2, v) and vi). For many

estimatoré* and the maximum posterior estimat#f ~ practical classes used for source coding, e.g., a finite ergodic
uniquely exist in©*. Markov source, the iterated logarithm law of the maximum-like-

v) (Consistency of the maximum posterior estimator) THEod isrt:mator_ IS Sat'l_slz'equ Wz'Ch leads to thed_s'_[rong consIs-
maximum posterior estimatdt* is strongly consistent. LNy of the maximum-likelihood estimator, Condition 2, v) [8].

That is Moreover, this leads to Condition 2, vi), in practical cases, see
' Examples 4 and 5. O
Hék o] =0 as. (68)
B. Examples for Model Class
whenn — oo. Next, we show examples of the parametric model classes sat-
vi) (Consistency of the information matrix) There existésfying Condition 2. The model classes of these examples are
§ > 0, such that useful for the source coding.
1 N N Example 4 (Multinomial i.i.d. Source)Consider the
= log P(a"0%) — H™(6%) as. (69) multinomial i.i.d. source ont¥ = {0,1,2, ..., 3} Let
) . 8; be the probability of the symbal, i € X. The vector
_1 & log P(a™|0%) —I%(6%) a.s. (70) 6% = (6o, 61, ..., 6x_1)T specifies the probabilistic model,
n 0fk(96k)T wherek = 3. Letting #* be continuous parameter on

uniformly for all 6% € Bs(6**). O ©%={(b,6,...,0_)70< b0, b, ..., 01, O <1}
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wheref;,, = 1— Zk ! ¢;, this model class is a parametric modewherey; is a parameter of the Dirichlet prior density and Condl-
class. tion 2, vi) is satisfied. Therefore, we haie — 6% — 6%+ a
We assume tha** exists in the interior o®*. The informa- in this case. lkupgi ot f(6%) < oo, then
tion matrix I*(#*) is given by
k l10,5_>;P(31:"|9k)—i—lf(Hk) — l10,5_>;P(31:"|9k)
9?5 07 log 6; n n n

* 7 nk =0 ~
I"(6%) = TR (00T (72) uniformly for ¥ € ©F and we haved* — #**, a.s. Then,

N Condition 2, v), is satisfied in these cases. Moreover, Condition
where thef}’s are given byo; = E*{ itforn e {1,2,...} 2,iv)is obviously satisfied.
and NV;'s are random variables representlng the appearanceNextwe consider Condition 2, V%M is given by
D0k (56 )T
numbers of symbol$, 1, ... 3 in X", respectively. That is,
the (4, i)th element ofl*(e") is given by

9y % log b,
o o s 1 @grEre) T 78
(6:)? * 1 \2 (73) n o 9GF(90K)T T 96k (96F)T
That is, the(i, 4)th element of: %&”)T‘” is
and the(i, j)th element off *(6%) is given by
n; T
9k (74) 71(91)2 k—1
k=1 > n|l-— Z o;
1—- 36 =0
j=1
and the(i, j)th element of & log D(x"16) g
where6** = (65, 6%, ..., 6% )T. Thereforedet I*(6*) is (i, J) D% (06%)
obviously differentiable. Whes* = 6%, 1*(#**) reduces to n
I(#**). Since the determinant @{¢*) is given by T\ (80)
I(6* _— 7 < j=
det I(6%) = N (75) j=0
det I(6*) is minimized whendy = 6; = --- = 6 and its when: # j. Sincen;/n — 67, a.s., we have
minimum value is given by
mindet 1(6%) = (k + ¥ > 0. (76) 108P (z"|6%) — Z 67log6; as. (81)
=0
Since0 < #; <1forje€{0, 1, ..., k}, we havedet I(#*) <oc and
and || 22| < oo, Therefore, Condition 2, i) is satisfied. ) Y 8 logh;
Since 1 9log P(="|0") =0 as (82)
n 06%(96%)T o0r(9eF)T

lim det 1(6%) — oo, forvje{0,1,..., k}

’ Therefore, there existé > 0 so that —ilog P(z"|0)

we cannot assumg/det I(6*) < C’ for some constant” for H*(0%), as., and
the multinomial distribution class. 01 n
The likelihood functionP(z"|¢*) is given by _1Plos P@™(6) gy
n 09R (96T
k
Pa"|6%) =[] )™ (77)  uniformly for 6* € Bs(**). Then Condition 2, vi) is satisfied.
=0 Therefore, this model class satisfies Condition 2 for the multi-

nomial distribution class. Wheff* exists in the interior o0&,

and this function has a unique maximum@ for z» € X", " , >
we can also see that Condition 3 is satisfied from [8]. [

wheren; is the appearance number of the symbuwl =™. The

maximum-likelihood estimator is given b = n;/n,i =  Example 5 (Finite Ergodic Markov Sourcefonsider the
0,1, ..., k. It was shown in [8] that this model class satisfiefinite ergodic Markov source o’ = {0, 1, 2, ..., 3}. Let
the strong law of large numbers, thatiisn, oo 5= — 67 > g, . = p{*)) pe the probability of the symbalat theJth state
0, as. Thatklsek — 6%, a.s. If we assume the Dirichlet prior s and gs,, the stationary probability of the states, where
denS|ty onok, thené; is given by ie X andJ =0,1,..., 5. We assume that the set of states
. ni+ 7y — 1 is known but the optimal parametéf ; is unknown. We may
91 — T T k _ T ? .
nt Z%’ — 1 regardé (60,0, ..., 8s—1,5)" as acontinuous parameter,

wherek = (S + 1).



936 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 3, MARCH 2001

Let ¥; ; be random variables representing the appeararemed (87) is satisfied, we see that Condition 2, vi) is satisfied by

numbers of the symbol$, 1, ...,  conditioned on the statesa discussion similar to that for Example 4.
s;,7=0, ..., 5, inthe random variabl&™. We define Therefore, the finite ergodic Markov source satisfies Condi-
pl .= lim LE*N,; tion 2. We also see that Condition 3 is satisfied from [8]. [
1,7 n 3"
Then the optimal parameter is given by We do not retain the assumption of i.i.d. property in Condi-
ok = (9 0" )7 = (pt o )T tion 2. Generally speaking, asymptotic normality holds for other
=\Vo,00 -+-» Yg-1,5) = Po,070--+»Pg-1,5) -

than i.i.d. property. These conditions are general and practical,

The stationary probabilities on the states calculatediibyare o5 acially for the discrete distributions used in source coding.

denoted byy; - 4.

The information matrix™(¢") is given by C. Essential Lemma for Analysis (Asymptotic Normality of

92 i Zaj : log b Posterior Density)

I*(0%) = 4=014=0 (83) tSefore artaly2|ng of the t:ode Ie'ngths, we state the asymp-

39"(39") totic normality of the posterior distribution. Rissanen discussed

where the code length of the maximum-likelihood code on the asymp-
totic normality of the maximum-likelihood estimator [30]. See

b, =1- Z 0i, i also [6]. The key to the analysis in this paper is the asymp-
=0 totic normality of the posterior distribution. We can prove the

and almost sure convergence of the posterior density under Condi-
B Z g tion 2 from similar discussion in [2, Propositions 5.13 and 5.14,

pp. 285—-297]. Then, we have the following important lemma.
So det I*(6%) is obviously differentiable. Whe#* = g%+, Lemma 2 (Asymptotic Normality)under Condition 2, the

I*(6%) = I(6**). The determinant of (6*) is given by Bayesian posterior densities of the parameter satisfy asymptotic
s 1 normality in almost sure. That is, the posterior distribution of
det I(6%) = H(qu-)’ﬁ o e (84) ¢k = \/n(6% — 6%) converges almost surely to a normal dis-
0.0 05,

3=0 tribution with mean zero and covariance matfi% (6¥)} 1. In
Hereg,, depends o®*, and it is difficult to derive the general particular, ifRi:‘ is arbitraryk-dimensional rectangle, its proba-
formula of det 7(#*) using only#*. However, the structure of bility mass induced by (#*|z™) satisfies
the finite ergodic Markov source is giveg,, can be written
as¢*, and we can se€, < detI(6*) < oo. For example, p(¢* ¢ R§|x") :/ fe(&F|a™) de*
for the binary first-order Markov chain such th&t= {0, 1}, €k CRE

S =1, ands; means that the current symbokig {0, 1}, g, ﬁ* .
andg,, are given by, +; —»and; Q‘Jrgo , respectively. The det I"(¢ / e — 3l 1, @ de* as. (89)
det I(6%) is therefore given by COEEI ERY
1
1(6% ) Elons . . e
det I(6") = (Br0+ 601020000 (85) wheref:(£*|z") is the posterior density @f* which is given by

When#, o = 611 = 1/2, the above function is minimized -
and its minimum value id. Letting 6y o — O oré; 1 — 0 fe(€¥lz") =
oréi,0+6o1 — 0,det I(#*) — oc. Thus,det I(6*) is not

upper-bounded, but is lower-bounded by some positive constiddreover, the posterior densitf (¢¥|z™) satisfies
Cy. Therefore, this model class also satisfies Condition 2, ii).

F(O%|z™). (90)

n

We assume the initial state is known again. We define det I*(6%) _Lyerpe
ng---ngandng ;, ny, 4, - .-, ng, ; Similar to Example 2. That f5(£k|a:") — W e 2" M@k gs. (92)
is,n = Y,n; andn; = Y, n; ;. The likelihood function m
P(z"|6%) is given by uniformly for ¢¥ € QF, whereQ* is arbitraryk-dimensional
. rectangle satisfying2*| < oo.
(z"]6") H H i )" (86) Proof: See Appendix A. O
=0 Th i ity | ial for the proof of Th
and this function has a unique maximun@#. It is known that Oremesasymptotlc normality is essential for the proof of The-
the strong law of large number is satisfied [8], that is, '
# — 07 ; as. (87) D. Main Results for the Parametric Model Class
which is equivalent to Condition 2, v). If Condition 2, i) is sat- For the difference of code lengths, we show the following
isfied, then Condition 2, iv) is also satisfied. result first.
Moreover, sincdog P(z"|6%) is given by Lemma 3: We define
log P(z"|6") Z ni,jlog; ; (88)

& =n(@* —6*) and Z*, = {¢"|0* € ©%,.}.
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Then the relation between (6) and (7) is given by V. ANALYSIS FOR THEHIERARCHICAL MODEL CLASS

ot . " . We analyze the difference of the code lengths between the
LipL(#") = Lpayes(z™) MDL code and the Bayes code for the hierarchical model class.
For the hierarchical model class, we denote

— max < log AGIED . (92)

§heE \/det I (ék +5 )

Pla"|m) = /0 Pt 04 ) do. (97)

The data sequence® is emitted from the true distribution

Proof: From (6) and (7), we have P*(2™) and we do not assume th&t (-) exists inH. Although
the hierarchical model class defined in this paper may not have
Lﬁm(in) _ LeBk (") a nested structure, it is a trivial case and does not lead to a con-
e o tradiction of the results.
~ max {log— P(z"16%)f(6%) The optimal parametet*~ of a modehn is defined by
dreet, | Jp P67 F(6F) doF o
. 0% = arggs,, min H*(m, 6%), (98)
' m} (93)  whereH*(m, 6% ) is given by

H*(m, 6) = lim ~E*{—log P(X"|m, 6**)}. (99)
In the above equation n—oo N

We denote the maximum-likelihood estimator and the max-
imum posterior estimator of the modet given z™ by §*~

and 6%, respectively. And we define the information matrix
I*(6%=|m) as follows:

PO i ot CAPYACi)
f(9k|37 ) = ‘[gk P(27|6%) f(6%) do* (94)

is the posterior density at the poi#it = 8*. From#* = 6% + 9 low n k
iy ) ok ) N og P(X™|m,8%")
%5" and (90), the proof is completed. O  Ir@m)= lim E {— 0 (98T . (100)

Next, underg&:ondition 2, V\g(ké obtain the asymptotic diﬁerj*(ekm|m) — [(@%~|m) for V6*= € ©F« is not generally
ﬁgtrfmbaegl\_leemMDL(x ) AN Ly, (47) using Lemma 2 and i e But,[*(#*= |m) = I(6*~|m) holds for most of the
practical model classes for source coding.
Theorem 5: Under Condition 2, the relation between (6) and Note that there may exist;, my, #%~:, and#*~= where
(7) is asymptotically given by m1 # me, satisfyingH*(my, 1) = H*(ma, §%2). The
optimal modebn* is defined as follows:

ak k
Li’IDL (xn) = LeBayes

n +
(") + 0 (1) as. (95) H*(m, §5) = H} (101)

m" = arg,, min {km

whereO™(1) is the term such thdt< C; < O (1) < Cy < 00

for sufficient largen. That is, there exis; > 0 andCs; > 0 where ™ is given by

such that H* = min H*(m, §+). (102)
P(-lm,0km)eH
C1 < Lpr.(z") = Liayes(z™) < G2 @S, (96) Finally, we define the ball
whenn — . Bs(8*|m) = {9’% € Ok ||gh — 0% || < 5}.
Proof: See Appendix B. O

We assume the following conditions for the model class and

we can interpret The_orem 5 as follows: The _second term Bayesian inference. These conditions are stronger than those
the RHS in (92) can be interpreted as the posterior probability o\, med in analysis for the parametric model class, that is, we
the cell of the quantized parameter. The posterior distribution of | 1\« the iterated logarithm law in this section

the parameter is asymptotically normal whose variance—covari-

ance matrix ig1/n){I*(6*)}. On the other hand, the quantized Condition 4:

width of the parameter is also proportional to the standard devi- i) (Existence of #*=) For m € M, the function
ation of the posterior probability density toward the quantizing —H*(m, 6*) is a unimodal function or®*= with
axis. The more the standard deviation of the posterior density ~ maximum point in the interior o®*~. That is, the
decreases as the sample size increases, the smaller the quan- optimal parameter of modeh, 6%, exists uniquely in
tizing widths in relation to this standard deviation. Thus, this the interior of©*~ for Vm € M.

posterior probability of the quantization cell does not converge iy (Smoothness of class) Far € M, the Fisher informa-
to 1, thatis, the true quantization cell does not exist fromthe be- ~ jon matrix (6%~ |m) satisfies

ginning although the true parameter exists. For this reason, the

difference of the code lengths does not converge to 0 < Co < det I(*|m) < o0, for g% ¢ @k
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iii) (Smoothness of prior) Fom € M andV 6%~ ¢ ©kn,

iv)

v)

Vi)

From Condition 4, ii), the distribution of; conditioned by
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whereCy is some positive constant. Whéfi- = %=, Here,d (9’“ ) > 0 is a finite constant depending only éfi~
I(0%n|m) = I*(6%=|m). Moreoverdet [ (6%~ |m) and andP(a:1|a: m, 0%=) = P(z1|m, 6%).

#( Ok, i
det I" (6% |m) satisfy Example 6 (Finite Ergodic Markov Sourcefonsider a fi-

o det I(6%=|m) nite ergodic Markov source o' = {0, 1, 2, ..., 3}. Let the
H i H (103)  set of states of the Markov model be previously unknown. That

a6
is, we do not know the length of memory.
H ddet I* (0% |m) H (104) Let m; be a model specifying a set of states
OfFm
{s0(m1), s1(m1), ..., ss,, (m1)}

for %= € @F.

wheresS,,,, is the number of states of the model . Similarly,
we can constructi,, ms, . . .. For example, we consider the bi-
nary alphabet’ = {0, 1}. Letm, be the simple Markov model
with two states. Letns be the second-order Markov model with

f(6¥~|m) > 0 and f(6*~|m) is three times continu-
ously differentiable fog*~. That is, we have

Bl Kop—1 k1 . four states. Similarly, we defines, m., .. ., as the third-order
Z Z Z k—k|m)k < cf(gkm) Markov model, the fourth-order Markov model, ., respec-
= Do 1= 90,0070 tively. Then we constructt by {my, ma, ..., my}, where

(105) M is the number of models and j; is the A/th-order Markov
wherec (6% ) is some finite constant depending only ormodel.
ghm Each modeln has a parametet!™: with elements™ =
(Existence of estimators) The likelihood functlorp(sj(m)) Herep(s /M) s the probability of the symbalat the
P(2™|m, 6%~) with respect tof#*= given z" is uni- jth states;(m) of a modeln, andg,,(m), the stationary prob-

modal or monotonic o®*~ for z™ € X™. The posterior ability of the states;(m), where: € X andj =0, 1, ..., S,
density functionf(6*~|z™, m) has a unique maximum and S,, is the number of states of the model We may re-
in ©*=_ That is, both the maximum-likelihood estimatogardé*~ = (9{; b - - 9’5 1.s,,)" asacontinuous parameter,
6% and the maximum posterior estimatdr- uniquely wherek,,, = /J(Sm + 1)
exist forvz" € A" andvm € M. We assume the initial state is known. L€t ;(m) be random
(Iterated logarithm law: 1) Fom € M variables representing appearance numbers of each symbols
0, 1, ..., B conditional on the states;(m), j = 0, ..., Sm,
o — GFn 1 O <(10glf/g—n)l/2> as (106) of the random variablé&™. We define
n
pi j(m) = lm SE*N; ;(m).
(Iterated logarithm law: 1) There exists > 0 for m €
M so that Then, the optimal parametéf~ is given by
% log P(z"|m, 9"””) g = (P5,0(m), -, Pz—l,sm(m))T-
N ) log log n)t/? The stationary probabilities on the states of the maedehlcu-
= H'(m, 6")+0 <( NG ) ) as. (107) lated byp; ;(m) are denoted by” o(n )(m) (m)( m).
1 dlog P(z"|m, 6%) From the iterated logarithm law [8], [10], we”ﬁave
n Ofkm Moo )1/2
‘ ni(m) _ (loglog n)"/
OH*(m, 6%) (loglogn)*/? D) p; j(m)+ 0O <—> (111)
= T +0 < 7 ) a.s. (108) n Vn
1 8% log P(z"|m, 6%n) for_mg M. Us_ipg this fact, we can ShOV\{ that this m.od.el class
T 06Fn (96%)T satisfies Condition 4 fo¥m € M by a discussion similar to
12 that of Example 5. O
7%/ pkm (103 103 7’L) /
=I'(¢"|m)+ O NG a.s. (209 Theorem 6: For the same prior probability, the relation be-
tween (12) and (14) is
uniformly for 6%~ € Bs (6% |m). O

m, §Fm n m, km n N ~ n
Ly " @™y = L 7 (@) —log P(mla™).  (112)

Bayes

«*~! satisfies the following inequality for 6%~ € ©*~ and Here, s represents the model which maximizes the posterior

Ym €

Vi1,

M: probability P(m|z™), which is given by
Fon o P(z™|m, %) f(6% jm) P(m) d6*
ZZZ Blongazth:k 77; g% <c;7(9km). P(mlz") = Jotm |m k)f( k|m) (m) —.
=1 j=11=1 89 mae mae Efgkm xn|m7 0 m)f(e m|m)P(m) dg¥m

(110) (113)
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Proof: This can be proved by a discussion similar to tha&rom Lemma 3, under Condition 4, we have
of Theorem 1.

—kon

g n . n
This theorem shows that the code length of the Bayes coLdlt\émL(aj Im) tog P(a"|m)
is smaller than that of the MDL code bylog P(m|z"™) using Fe (@2, m)
the same prior, and the Bayes code is effective on finite data se- —max < log ¢ — (119)
guences. Next we consider the order of the tertag P(mn|z™). & \/det_[ (ék + f_’“|m)
The following lemma showing the order eflog P(n|«™) is v

very important for the analysis in this section. From this lemmgy, ., < A4 where fe(€*|z", m) is the posterior density of
we can analyze the difference of the code lengths by regardigg = /(o — ék) given by

. 1 .

{P(a:"|m) = / P(z"™|m, %) f(6%|m) do*|m € M} Je(€¥la™, m) = F f(6¥z™, m). (120)

n
as a discrete model class. ?rcc)jm Theorem 5, the following asymptotic in equation is satis-
ied:
Lemma 4: Under Condition 4, we hate
k|
P(m*|z") — 1 a.s. (114) 0<Ci<—max{ log fe(&T]e ’7_%) <Cy<oo as.
¢ \/detl(ék+j—%|m)
Proof: See Appendix C. O
(121)

Then, we have the following theorem.
yvhenn — oo, WhereC; andC, are positive constants.

Theorem 7:Under Condition 4, the relation between (12 From (119) and (121), we have

and (14) is given by
, , L","’gkm ") = min Lg,km z"|m) — log P(m
B @) = It e 4ot s iy e ) mEMk,{ hisuten) — log P
=Ly " (2 +01(1) as. (122)
whereo™ (1) is positive andim,, ., o1T(1) = 1.
Proof: From Lemma 4, the modeh which maximizes
the posterior probability”(m|z") asymptotically corresponds  For the hierarchical model class, it is clear that parameter

From (122) and Theorem 7, the proof is completed. O

to the optimal modein*. Then quantization is not effective for source coding. In the above the-
orem, the difference of both code lengths is given by constant
—log P(r|a") = o*(1). (116) order.

From this equation and Theorem 6, the theorem is provéd.
VI. DISCUSSION

This theorem shows that the difference of the code IengthsAlthough it had been shown that the Bayes code is more ef-

between the code using mixture of all models and the code ba?eeéjtive than the MDL code from the viewpoint of code length

on model selection vanishes. Next, we consider the differenc LT -
of the code lengths between (10) and (14). With the same prior distribution for finite value of [29], we

analyzed the difference quantitatively in this paper.
Theorem 8:Under Condition 4, the relation between (10) Since the difference of both code lengths is not larger than

and (14) is given by 0O(1), the difference of the mean code lengths per symbol (com-
pression rate) is not larger thél{1/») and converges t@. The
Lﬁgﬁ”(xn) _ nga,ye;m (z") + Ot (1) as. (117) nonpredictive MDL principle which is discussed in this paper

has two points of operation, i.e., the operation of parameter
whereO* (1) is the term such @& < ) < O+ (1) < Cs < 0. quantiz_ation and that pf selection of a model or a representa-

tive point of the quantized parameter, where the former has a
stronger influence on the difference of the code lengths than the
latter.

Proof: Define L, (27|m) as

Lgkm (2"|m) = min 4 — log P(z"|m gkm) If the prior distribution of the Bayes code may be different
MDL P & ’ from that of the MDL code, then it is possible to find a case
in which the code length of the MDL code is smaller than that
f(gkm|m) of the Bayes code for some information source. The coding

—log - (118) which has larger prior probability for the optimal model is ef-

\/ﬁk” det I (5’”” |m) fective. However, we cannot practically establish the prior distri-

bution with a large probability for the optimal model when the
timal probability model is unknown. Therefore, the results

8This result shows the strong consistency of the model selection by maxi-
mization of the posterior probability, whose asymptotic formula, the BayesizQ‘p i " B "
information criterion (BIC), was proposed by Schwarz [31]. which were discussed under the condition that the same prior
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was assumed are practical and important. In practice, since we.2) “Smoothness:” Forany> 0, there existsV ands > 0
can recognize the prior distribution of the MDL code before- such that, for anys > N and6* € Bs(6%), L//(6%)
hand, it is surely possible to construct the Bayes’ code who's exists and satisfies
code length is equal or smaller than that of the MDL code. 17 ok { 1y Gk }_1
- < <
From the above, the selection of a probabilistic model is not I=Ale) < La(07) 1 Ln(67) S I+A(e) (125)

always effective for all various purposes. We have reconfirmed where! is thek x k identity matrix andA(e) is ak x k
that the effectiveness of the MDL principle occurs within the symmetric positive—semidefinite matrix whose largest
framework of statistical model selection or universal modeling eigenvalue tends td ase — 0.
(30]. c.3) “Concentration:” Fov 6 > 0, whenn — oo

When the MDL Principle is applied to the model selec- :
tion problem, Ly, (z") should be applied rather than ok € By (%)

e
LS (z™). This is because i _
Conditions c.1) and c.2) imply that

. —kom ~
Lol @y < Ll T (@t),  forvat e An lim f(6*]a") (det £,)"7 < (20)7MF (127)

with equality if and only if ¢.3) holds.

Moreover, given c.1), ¢.2), and c.3)F = £, /%(6F — 6%)
converges in distribution th-dimensional standard normal dis-
tribution

e
that is, L715  («™) are not true MDL. On the other hand,
—log P(z"|m) is Bayes optimum code length when is
fixed. Minimization of —log P(z™|m) — log P(m) is equiv-
alent to maximization of the posterior probabilifg(m|«™). 1
From Lemma 4, this criterion for model selection has strong (%) = (2m) 2 exp {—§(¢’“)T¢’“}
consistency for the hierarchical model class.

wherex; 2 is k x k-matrix satisfyingz,, 1?5, /? = -1,

n

VII. CONCLUSION U

In this paper, we have analyzed the difference of the codeAt first, we show that c.1)-c.3) of Lemma 5 hold almost
lengths between the MDL code and Bayes code. From the fétrely under Condition 2 and the posterior distribution con-
sults, the effectiveness of the Bayes code against the MDL co®¥ges almost surely to the normal distribution from Lemma 5.
with parameter quantization has been shown from the standSince f(6) is three times continuously differentiable from
point of code length. Future work includes discussion of tHeondition 2, iii), we have
properties of other types of MDL codes [30], or the relation 1 1 8%log P(z"|0%) 1 0%log f(6%)

1" nky
between the MDL criterion, the Bayesian model selection, and , Ly (8%) = n  90k(96k)T n 96%(90K)T (128)
conventional information criteria in model selection [1], [15],.. 2 o F(8F . .
[19], [22], [31], [32] from new viewpoints. Emce%{w does not depend enand Condition 2, vi), we
ave
APPENDIX A Loy - 17 as. (129)
THE PROOF OFLEMMA 2 n
For the asymptotic normality of the posterior distribution, theniformly for vV 6* € B;(6**). We have, therefore,

following necessary and sufficient condition shown in [2, pp. 1 -1 ./ 5k
285-297] and [7] is useful. n (Bn) " = I'(8%) as. (130)

whereX,, is given by

Lemma5[2], [7]: Fixasequence™. Let6* be a strict local .

maximum of L, (6%) = log f(6*|2™) satisfying s () 9PLn(0Y) 131
AL, (6" o ( o )) = oo, ) - %Y
Li,(6%) = 59(k ) =0 (123) From#* — 6**, a.s. and Condition 2, ii), there exist the posi-
o =0t tive constant€>; > 0 andC, > 0 such as

and implying positive definiteness of Oy < det I (6*) < O, as.

-1 2L, (6% -1 whenn — oo. Then, sinces,, — —1(1*(6%))~*, as., the
Yp=— (Lﬁ(ek» == <W i ) - (124) Jargest eigenvalue of,, tends to0 almost surely, and c.1) is
or=et almost surely satisfied. i
Defining Sincef* — gk, L/(9F){L!(6*%)} ! satisfies

uniformly forV 6* € Bs(6*) form (129). From Condition 2, i),
the following three basic conditions are necessary and sufficiep) is almost surely satisfied.
for the asymptotic normality of the posterior distribution. Therefore, from

c.1l) “Steepnesslim, .., 72 — 0, wherez2 is the largest &8 = /n(6* — ék) and fe(£¥[a™) = S(6%]z™)
eigenvalue of,,. ¢ N
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we have from Lemma 5. And the posterior distribution gt =
Ok V/n(8* — %) converges almost surely to the normal distribution
N det I*(0%) . . AR 1 !
lim fe(€%|z") < —5— as (133) with mean zero and covariance matfix*(6*)}~*. The first
o0 (2m)k/ half of the theorem is proved.
from Lemma 5 and (130). He& = 0. If Next, we show the uniform convergence of the posterior den-
. . sity for V&% € QF. From Taylor expansion, we have
/ FOF ) doF — 1 as. (134)
ok € Bg(8%) (0% |z™)
holds, then Wi have s » = F(6%|a™) exp{Ln(6") — Ln(6%)}
nlgréo F(6%|z™) (det X)) = (27) a.s. (135) _ f(9k|$n) exp {_%(ek _ 9k)T(I+ Rn)Egl(e’“ - ek)}
from Lemma 5. Then we show (134) at last. (144)
We have hereR. is o b
k| n n|gk k whereR,, is given by
Dog SO 1 PG 1Y)
n f(O%*|z™) n P(zn|0%*) n

F(O%) R, = L6 {Li) } 1 (145)
— —H*(6%) + H*(#**) a.s. (136) .

asn — oo uniformly for¥ ¢* € B;(6**)forV § > 0 from Con- 1" some¢** lying betweerg" and6*.

dition 2, iii) and vi). From Condition 2, i) *(6**) < H*(g*) e have, therefore,

for V6* € ©F. On the other hand, sind# — #** almost  f(6%|z") 1 g L

surely ,P(z"|6*) givenz™ is a unimodal function with respect  f(gk|;n) = P {_5(5 VI B ()8 )} - (146)
to 6% almost surely whem — oo from Condition 2, i) and iv).
This is becausé(z"|6%) givenz™ is a unimodal or monotone
function with respect t@#* andé* exists in the interior o9* sup ||€¥|| < Vi
almost surely whem — oc. From (136) and unimodality of keqk

P(z"|6%), there exist¥’s > 0 such that

F(0*=")

For any rectangl€*, there existd, > 0 such as

Therefore, we havé* = 6% + f/—% — 6% uniformly forv ¢* e

: log ————*% < —C5s a.s. (137) QF. This implys
no 7 (0 |am)
uniformly forV 6% ¢ Bs(6**) whenn — oc. A-ol<I+R, <1+l as. (147)
Therefore, whenn — oo uniformly for vV ¢ € Q* for V¢ > 0, since
6% |z . 1 . 1
% < exp{—nCs}, as. (138) Ly (@M L0}y 1 — I @DH{I*(6")} + as.
holds uniformly fory 6% ¢ Bs(6**) whenn — cc. and||6* — 6*|| — 0, a.s, uniformly forv¢* € Q*.
On the other hand, from (133) ang(¢*]z") =  From (146) and (147), we have
\/ﬁkf (€¥|z™), there existsC* > 0 such that g AT s S g ok
; : % = exp {5 TN} 1+ 0(1)) as.
F(8% ]2 < Cib as. (139) J(O"l=")

(148)

uniformly for V& € QF. Sinceexp{—1(£5)TT*(6*)(¢%)} is
upper-bounded fov ¢* € QF, we have
F(BF|z™) < C* /" exp{—nCs} — 0 as.  (140) F(O*]2m)

holds uniformly forv 6% ¢ Bs(6**) whenn — co. We have,  f(8|z")
therefore,

holds whenn — oo.
From (138) and (139), we have

= exp {~5() I (0")(€) } +0(1) as. (149)
uniformly forv ¢ € QF. From (143), the proof is completéd.

APPENDIX B
THE PROOF OFTHEOREM 5

/6 oo f(6¥|z™) dé* — 0 a.s. (141)

because®”| < oc. This means
From Lemma 2

%z do* — 1 a.s. 142 ~ 2
/ekemew) SO (142) det I7(6%) €I ar,

- ~ Je(€¥la™) — Gy 2 as. (150)
From 6 — 6% a.s, we haveBy (6¥*) C Bs(6), a.s, 4 ’
whenn — oo for 0 < V¢ < Vé”. This means that c.3) is uniformly for v ¢¥ € Q. On the other hand)* gives the strict

almost surely satisfied. maximum of f(6#*|z™). Then, from (150), the posterior density
Since c.1)—c.3) are almost surely satisfied, we have fe(€¥|2m) satisfies
F(6%|2) det I+(6%) det I*(6%)

lim = a.s. (143) max fe(E¥|z™) <

00 \/ﬁk (27r)k/2 cies W + €1 a.s. (151)
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whenn — oo for Ve, > 0, whereg* is given by From (155), there clearly exists’ > 0 such as

& =vn (gk - ék) . (152) ' < max_ fe(€¥|z") < max fe(€F|2") as. (160)

ka(QkﬂEk) kaEk
Let Q* be arectangle whose volume is sufficiently large such
thaté® € QF. Since whenn — oo. _
From (155), (159), and (160) there exists > 0 such as
- 1 -
Co < y/det I 9k+—k> k| pn
0 \/ < \/ﬁS — max log fe(&7l") < C, as. (161)

fl"EEk S Ek
from Condition 2, ii), andf¢ (¢*|z™) is almost surely unimodal det 1 (ek + %)

whenn — oo from Condition 2, iv) and v), we have
is satisfied whem — oo, which leads to (158).

k|.,.n
‘max fe(€¥z") Since both of (157) and (158) are proved, the proof is com-
Tk eEk \/detl( 1 £k> pleted. O
fe(&¥|2™) APPENDIX C
=_ max_ a.s. THE PROOF OFLEMMA 4
gre@inzt) detI( L 5k)
At first, we show
\/detf*(ék)/ (27 )F/2 P(z™m) 0 as (162)
< +e as. (153) P(z"|m*) h
. 1 “k
Ek&;gﬁgk)\/de” ( NS ) for Vm # m*, m € M under Condition 4.

From Lemma 2 and
whenn — oo for Vey, > 0.

On the other hand, the derivatives fdetI*(6%) and P(x™|m, 6% f (6% [m)

log P(z"|m) = log 163
/det I(6%) with respect tof* exist from Condition 2, ii). og P(x"m) = log F(@%m|z™ m) (163)
Moreover,6* — 4* — @**  a.s. from Condition 2, v), and o have
I*(6%) = I(¢**) from Condition 2, ii). Therefore, we have V¢ "&V
~ k n
~ N n _ N n [ m .
\Jdet I(8%) — \fdev I(6+) as. (154) los P(e"lm) = log P(a"m, §%) = = log o
N 1 — det I*(6%|m)
det [ <9k + —§k> —/det I(6**) a.s. (155) -+ +0(1); as. (164
\/ vn ) (1) (164)
uniformly for ¢* € Q* whenn — oc. Equation (155) is derived for v/, € M. We have, therefore,
from || 5=¢*|| — 0 uniformly for &* € Q* becauseQ*| < co.
From (153), (154), and (155) log P(z"|m)
max log < —log— +e¢3 a.s. (156) P(z"| gkm) k k.
ghemk det 1 (6% + & 2 7 2r =log L, _ < m _ Dm ) ogi
eul (8 + &) P,y N2 2 )%
is satisfied whem — oo for Ve > 0. Therefore, from Lemma f(ékm* m*)y/det ]*(ékm|m)
3, it has been proved that there exi8tg, > 0 such as - — = +0o(1) as. (165)
a* ok " (0% |m)y/det I+(0%m |m*)
C1 < Lyp(z") — LBaves(x ) as. (157)
whenn — oo, where0 < C; < 3 klog 2n. forvVim € M. On the other haqd, from Condition 4, ¥ isa
Next, we shall show strong consistent estimator &f~, that is,9’“m~,—> 6%, almost
o ok N surely forvm € M. We have, thereforef (6%~ |m) = O(1)
Lymr(z") = LBayee( )< as. (158) aimost surely andet I(#*~|m) = O(1) almost surely, where
for sufficient largen. From Condition 2, ii), we have O(1) is the term such thaO(1)| < C almost surely. when
max f (Ek|$n) n — o0 fOI’ ElC > 0.
Ehe(QFrER) ¢ Therefore, from (165), if the equation
det I ék Ko P(x™ Nk _ .
et 1(0%) + vn B log (z"]m, Qk ) _ o = Fom logn — —oo a.s. (166)
Je(€ ") Plarm?, %) 2
< max a.s. (159)
S NEY) ot T (gk 1 E_A) for Vm # m* is proved, then the proof is completed.
v

9This means that the difference of code lenghts between the MDL code and
whenn — oo for 3K > 0, whereK o depends of2*. the Bayes code does not divergesta
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P(z"|m, 6%™)

At first, we shall estimatéog Pl 655)

pansion, we have
—log P(«"|m, 9’“;)
-~ -~ * T
—log P(z"|m, 6%~) — (9’“” - 9’“%)

dlog P(x™|m, %)
9k

-3 (o)

(o)

o (Hgkm

dlog P(z"|m, %)
965 g 00, ™

From Taylor ex-

rm =fkm
T 92 log P(z"|m, 0%~)
9G¥ (DG )T

Gkm =Bkm

) (167)
Glm =Gkm+

for somed*~+ lying betweerd*= and§*».
From Condition 4, v) and vi), we have

2 - n Ko
(@ — gyt 9 1;2:: ((3(; 9|’Za) z ) e (@ — gF)
= V(¥ — )T (G )/ (6 — o)
+0 <M) a.s. (168)
On the other hand, fromn
Hékm - 9ka -0 <%) a.s. (169)

and (110), we have

e dlog P(x™|m, %)
H9 H 2 le ; 96k 96" g™ -
B (loglog n)3/?
=0 <T) a.s. (170)

becaus@*~* — 6%~ almost surely. We have, therefore,
—log P(z"|m, %)
—log P(z"|m, %)

_ (é’km _ ekfn)T dlog P(x"|m, %)
89’“” Bkm =@km
+ 5 V(O = )T I (8 fm) /(6 — 6%
(loglog n)3/?
L0 <— as. (172)
N

]“VYL
Next, we show the order gf 2Xes (el lm. &7~ - . From
Taylor expansion, we have

1 dlog P(z"|m, 6%)
n ol

Bk =Gk
dlog P(z"|m, §%)
ol

1
n

Glm =g¥Fm

1 - g 0%log P(x™|m, 0F~)
- ekm _ ekm T i
o ) a6k (a0 )T

gFm =grm++

(172)
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for somed*»++ lying betweend*» and@*=. From Condition

4, vi), we have
1 dlog P(z"|m, gk )

n 89"” Bk =0k

OH*(m, §%n) (log log n)'/?
=~ N +0 T a.s. (173)
where2 (m. ")) . 0.

On the other hand, from identical discussion with (168), we
have

l(ékm _ 915 )T d? IOgP($n|m79km)

n aekm (aekm)T G —Ghm++

= (6% — )T I (O +F ) + O <—1°g log ”) as. (174)
n

from

. oo )1/2
|64 — 6= = O <7(1°g logn) ) as.

NZD
Accordingly, from (172)—(174), we have

(é’km _ ekfn)T dlog P(x"|m,6%)
89"” Gkm =fkm
= O(loglogn) a.s. (175)
because
] Moo Y172
(9’“” _ ekm)TI*(ekm++|m) -0 M a.s.
Vn

which is given by Condition 4, i) and v), argf~+t+ — gk
almost surely.

From Condition 4, ii) and v), we havé*(f*~|m) —
I(6%~|m) almost surely. We have, therefore,

P(z"|m, %)

from (171) and (175). Then we have
Pl Nk _ .
1Og ('/L' |m7 e ) _ krn krn logn
P(z™|m*, fFm=) 2
P($n|m ek;n) km_km*

=log LR A logn+0O(loglog .S.
og Pla i, 07 5 ogn+O(loglogn) a.s
a77)
At first, we consider the casg,,- > k,,. In this case,

H*(m, 6%) > H*(m*, 6%~ ) is satisfied. Then we obtain
P(z™|m, 6%)
P(z™|m, 6%n+)
for vV gk € @k

tive constant.
We have, therefore,

=—-Cn+o(n) as. (178)

- from Condition 4, vi), wher& is some posi-

P(‘Tn|m7 ékm) krn - krn*
log = — logn
P(x™|m*, OFm=) 2
krn - krn*
=—-Cn— 5 logn 4+ o(n) — —oc0, a.s. (179)

forvm € M whenk,,« > k.
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Whenk,,- < k,,, the equation

1 -
= log P(z"|m, %)
n

1 loglog n)*/?
= log P(z™|m*, 6= ) + O <M> a.s.
n

NG
(180)

is satisfied from Condition 4, vi) and the definition of*. We
have, therefore,

. P(x"|m, ékm) _ krn -
® Pan|m®, ) 2
krn* -

km *

lo - logn

™ logn + O(lognlogn) — —oc a.s. (181)
forVm € M whenk,,- < ky, from (177). Then (166) is
satisfied forv k,,, # k,.,~, and (162) holds.

From Bayes theorem

P(m|z™) o< P(z™|m)P(m) (182)
and (162), we have
P(m|z")
‘W — 1 as. (183)

for V'm # m* becauseM| is finite. This means (114). O
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