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Abstract — In this paper, we consider the Bayesian
approach for representation of a set of documents. In
the field of representation of a set of documents, many
previous models, such as the latent semantic analy-
sis (LSA), the probabilistic latent semantic analysis
(PLSA), the Semantic Aggregate Model (SAM]), the
Bayesian Latent Semantic Analysis (BLSA), and s0 on,
were proposed. In this paper, we formulate the Bayes
oplimal solutions for estimation of parameters and se-
lection of the dimension of the hidden latent class in
these models and analyze it's asymptotic properties.
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1 Introduction

Recently, huge repositories of textual data are avail-
able to use. In the field of information retrieval, Latent
Semantic Indexing {LSI)[1] was proposed. Although
the typical information retrieval systems match the key-
words in a user’s query to the index words for all docu-
ments in the database, LSI computes a smaller semantic
subspace from the original word-document matrix. On
the other hand, Probabilistic Latent Semantic Index-
ing (PLSI)[3], which was proposed by T.Hofmann, is an
interesting approach to automated document indexing
and information retrieval which is based on a statistical
latent class model for factor analysis of counted data.
From the probabilistic representation, we can treat the
latent semantic indexing problem based on the proba-
bility theory. However, the probabilistic model is es-
timated based on the likelihood estimation in PLSIL.
In the problems of the automated document indexing
and the information retrieval, the number of parameters
which must be estimated is huge. Therefore, the sample
size may not be sufficient to estimate the parameters in
these problems even if we can get huge repositories of
textual data. This is because we cannot calculate the
EM algorithm for huge size data from the viewpoint of
computational complexity. Although the Semantic Ag-
gregate Model (SAM) proposed by D.Mochihashi and
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U.Matsumoto is 2 model representing the meaning of
words, the SAM has also same properties as PLSI. In
these models, there arises a problem: "How can we se-
lect the dimension of the model?”.

On the other hand, we can find the results of
studies for estimating the order of a hidden Markov
model(HMM}{11]. Because HMM model does not sat-
isfy the smoothness assumptions for probabilistic model
class under which the AIC, the BIC, and the MDL were
derived, we cannot apply these model selection crite-
tria to select the order of HMM as they are. The PLSI
model is similar with the HMM model. Then, the sim-
llar model selection criteria in [11] may be applied to
make a decision of the number of the unobserved class.

In this paper, we propose the Bayesian representation
of the probability model for latent semantic analysis.
The Bayes method is well known as a useful method for
small size of data in statistics[7]. Moreover, Bayesian
statistics is congenial to the model selection problems.
However, any criterion from the viewpoints of Bayesian
statistics has not been proposed to select the number
of the unohserved class in the latent semantic analy-
sis. In the field of latent semantic analysis, N.Freitas
and K.Barnard propose a general Bayesian treatment
of the latent semantic analysis problem. However, in
the BLSA, the algorithm to estimate the parameters
is based on maximum likelihood method. Although
the prior distribution with hyper-parameters is assumed
in this model, the estimation of parameters or hyper-
parameters was focused. These parameters are esti-
mated by maximizing of the log-likelihood or marginal
log-likelihood.

We give a new probabilistic model for automated
document indexing and information retrieval based on
Bayesian statistics, derive the asymptotic properties,
and then propose the criterion to select the number of
class (model selection) based on Bayes theory. From this
formulation, we can derive the Bayesian criterion to esti-
mate the probabilistic inference in automated document
indexing and information reirieval. At first, we formu-

"Iate the latent semantic analysis based on Bayesian de-

cision theory for the case that the number of the hid-
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den latent states is given. Moreover, we consider the
problem how we should select the number of the hidden
latent states (dimension of a model) from the viewpoint
of Bayes decision theory. By the asymptotic analysis
and simulation experiments, we show the effectiveness
of our Bayesian method.

2 Preliminaries

Here, we show the conventional models for the infor-
mation retrieval and modeling of word meaning.

Through the paper, P(-) is used for a probability and
f{(-) is used for a probability density. When we don’t
specify the probability or probability density, then we
use the notation p(-) for a meaning of the probability
‘distribution.

2.1 Latent Semantic Indexing (LSI) [1]

Let each document be represented by a vector z;
(7e {1,2,.--,n}) containing the frequencies of d index
words. '

Let X be a word-document matrix given by

X =(a:1,::2,--‘,z,,) (1)

where = is the number of documents. Given a query

-+ g by a user, the retrieval system computes a list of

scores s; = ¢° 2; and put it out as a result. LSI rep-
resents the word-document matrix in a much smaller
k-dimensional subspace and this is done by the trun-
cated singular value decomposition (SVD). From SVD,
we can decompose X as

X =) toud; = TSD, (2)

=1

where T' = (t1,82,-++,t.} and D = (dy,da,--,d,} are
left and right singular vectors, S = diag(ey,oa,- -, 04),
and 01,09, ---,0, are the singular values. Selecting &
big singular values, we can re-represent X as

X = Tu 5, DT, (8)

where k < 7. The query is transformed to ¢*T%, the doc-
uments are represented as S Df. The relevance score
is computed as s = (¢"7})(S. DY).

Here a problem arises. The truncated SVD is the best
approximation of X in the reduced k-dimensional space
from the viewpoint of square error. However, we must
reasonably determine the dimension k. A range of k
from 100 to 500 or more have been suggested based on
empirical evidences. In [4], MDL criterion to determine
the dimension k is proposed and the effectiveness of the
proposal is shown from the simulation experiments,

2.2 Probabilistic Latent Semantic In-
dexing (PLSI) [3]

The PLSI is a latent variable model for general co-
occurrence data which associates an unobserved class
variable (the hidden latent class) ¢ € C = {c1,¢2,-- -, ¢k}
with each observation, i.e., with each occurrence of
a word w € W = {wi,ws, -, wq} in & document
z € X = {z1,23,,Za}. In terms of a generative
model it can be defined in the following way: 1) select
a document z with probability P(x), 2) pick a latent
class ¢ with probability P(c|z), 3) generate a word w
with probability P(w]|c). As a result one obtains an ob-
served pair (z,w), which leads the latent class in the
expression

P(z,w) =Y P(wlc)P(c|z) P(a). (4)

cel

Following the likelihood principle, we can estimate
P(c), P(=lc), and P(w|c) by maximization of the log-
hikelihood function

L= Z Z n(z, w)log Pz, w), (5)

cEX weEW

where n(z, w) is the term frequency, i.e., the number of
times w occurred in z.

In fact, the maximum likelihood estimator can be cal-
culated by EM algorithm.

1) E-step:

P(zlc)P(w|c)P(e)

P(clz, w) = Yeee Plz[c)P{u]c)P(c)

2) M-step:

2w 7z, w)P(clz, w)
¥ 2z w)P(clz, w)'

wle) = Lol 0)Plelz, w)
P(w|c) Yoo 7(2, W) Pleclz, w)’

P(c) Z n{z, w)P(clz, w).

P(z|c) =

We can rewrite (4) as follows:

P(z,w) =Y _ P{w|c)P(z|c)P(c)- {6)

cel

2.3 Semantic Model

(SAM) [5]

Mochihashi and Matsumoto proposed a Semantic Ag-
gregate Model (SAM) on word meanings by extend-
ing the PLSI. By this representation, the semantic dis-
tance and semantic weights of words can be reformu-
lated mathematically.

Agpregate
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In SAM, the probability model of co-occurrence of
words w and w' is introduced.

P(w,uw') =y P(w|c)P(w'[c) P(c). (7)
el

This model is extended version of the Aggregate Markov,
Model P(w'lw) = Y .o P(w'[c)P{c|w) proposed by

F.Saul and F.Pereira[6)].
2.4 Bayesian Latent Semantic Analysis

(BLSA) [8]

N.Freitas and K.Barnard propose a general Bayesian
treatment of the latent semantic analysis problem. They
constructed a model of the problem as a general for-

mulation. For X given by (1), each documents z; is
assumed to be drawn from the following mixture model

P(z) = Y P(zilo.,c)P(c)

ceC

d
S I Peslbesic)P(c)  (8)

ceC j=1

where z;; is j-th attribute of x; related to j-th word
and B, = (61,832, --,0:2) is & parameter vector. If
z; j € {0,1}, then P(x;|6c,c) is given by the form

d
P, c) = [[(6es)™ (1 - 05)' 5. (9)
i=1

Rewriting P{c) using the parameters as P(c;) = Ay, we
have

d
P(z;) = Z M 1‘[ P(zi ;1015 ¢) (10)
i=1

=1
where Zf:l =1
If C is given, the problem is reduced to estimate 8, and
P(c). They consider three types of Bayesian approaches,
namely simple Bayes, empirical Bayes and hierarchical
Bayes.

2.4.1 The simple Bayes method

The simple Bayes compute the maximum a posteri-
ori (MAP) estimator instead of the maximum Likelihood
estimator. The EM algorithm is easily modified to pro-
duce the MAP estimator[9],p.30.

2.4.2 The hierarchical and empirical Bayes
methods

The hierarchical Bayes model proposed in [8] has the
following three levels:

P(X|p,2) = []P(aile,=) (11)
i=1

P(P-ziﬂ) = IIP(‘F!ZI'M) (12)

p(n) (13)

where ¢ = (A,0) and A = (A1, Aq,--, M), 7 is the
hyper-parameters which specify the probability distri-
bution of the parameter ¢ = (A,8). If the posterior
probability distribution f(n|X} is fairly sharply peaked
around its mode #, then we can approximately use
p(w, zin, X) instead of the marginal posterior proba-
bility

P alX) = [ plouln XS0 (14)
This approach is the empirical Bayes method.

3 Latent  Semantic Analysis
based on Bayesian Decision
Theory

The Bayesian Latent Semantic Analysis proposed in
[8] is very interesting from the viewpoint of accuracy
of estimation from the insufficient size of document
data. However, in the BLSA, the algorithm to estimate
the parameters is based on EM algorithm. Although
the prior distribution with hyper-parameters is assumed
in this model, the estimation of parameters or hyper-
parameters was focused. These parameters are esti-
mated by maximizing of the log-likelihood or marginal
log-likelihood.

In this section, we formulate the latent semantic anal-
ysis based on Bayesian decision theory for the case that
the number of the hidden latent states, k, is given,

3.1 Basic Probability Model

For X given by (1), each documents z; is assumed to
be drawn from the following mixture model

] d
P(zil6,A) =Y & [] Plaegibg.ch),

=1 i=1

(15)

for i € {1,2,---,n}. If z;; € {0,1}, then P(x;]9, A} is
given by the form

k d
P(zi(6,)) = 3 M J](Br )5 (1 - 65)' =4, (16)

=1 i=1

where 0 < 6; < 1 and >, Ay = 1. Here, 8 =
(01)62!"'16&), where 8 = (Gl,llal,ﬂi"',e!,d)’ and
A = (A1,A2,--+, Ax) are previously unknown parame-
ters. P(X|6,}) is given by

n k d
P(xle,3) = ][ {Z M) (1 = 61,5)* =4 }

i=1 | [=1 i=1

k k n d
= E e Z {H A H(elhj)zi.j(l P Lt }

=1 In=1 }i=1 3=1
(17)
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3.2 Method for Calculation of Bayes
Optimal Solutions

We assume that the prior distributions f{8;;|c*) and
F(A). Then the posterior distribution of (8, A) given X
is given by

P(X|0, M f(8}f(A)
(X18, N F(8) F(\)dbdx’

P{6,AX) = (18)

Ll ?

When the square error loss function is considered, the
Bayes optimal estimator of (8, A) is given by

(4,%) f f (6,\)P(6,A|X)dodr.  (19)

In this case that we consider the prediction of fu-
ture observations, the loss function can be defined by
L(Az,z), the loss between the prediction Az and ob-
servation value 2, or L{AP, P), the loss between the
probability distribution of future observation and the
true distribution. Typically we can assume the square
loss for L{Az,x) or the logarithmic loss for L{AP, P).
From the Bayes decision theory, the optimal prediction
is given by calculation of the Bayes predictive distribu-
tion

P(z|X) = j; P, PO AT (20)

Method for Calculation of Bayes
Optimal Solutions

To calculate the posterior probability P(8, A|X) or
the Bayes predictive distribution P(z|X), we give the
form of the useful prior distribution. Usually, we can
assume the Dirichlet prior distribution on the mixing

coefficients A. The Dirichlet prior distribution is given
by

P(al +ag4--+ ak) ay—lyjo-1
FlanTaa) Tlas) N
(21)

where T'(:) is the gamma function. For the prior of 8,
we can assume the beta prior distribution:

ay—-1
AT,

)=

T +8%) s B-1
TATES) RED CF) S (9
(22)

forall I € {1,2,---,k} and j € {1,2,---,d}. If we know
nothing about parameters previously, we can set oy = 1
and g7 = g = 1. ,

For convenience, we denote I = (Iy,13,---, 1) and £ =
{th,ly,-- -, L)l € {1,2,-- -, k}}. I =; means that the
i-th document is emitted from the [-th hidden latent
state c¥. Define z(I]1) as

FBrlet) =

=Y 10 =1},

i=1

(23)

where 1{-} is an indicator function. "z(ljl) means the
number of I-th hidden latent state ¢f in I, Define z(i|!)

as
2y = > 2y (24)

i=l;

z(j|!,I) means the number of 1 of j-th element of z
emitted from the I-th hidden latent state c¥ in X on the
setting [ is given.

On the above setting, the likelthood function (17) can
be rewritten as

P(X18,2) =

ZH{(A, (1) ﬁ 01,5 =(:|u)(1_9 )1 m(Juz}

leL =1
(25)
The posterior distribution of §; ; conditioned by X and
A is given by

"t (@Y )
81X, Ay o AT gy
700s1%, ) o 2{11 “TEE)

el
. (gl‘j)z(ilf,l)‘wl;"—l {1- gl‘j)"-f(il‘-’Hﬁlz'j‘l } (26)

The posterior distribution of (6 4, A) is given by

f(Bry, AlX) =

A (U Ha -1 1 2
Ki Z{ (H( & ) r(a )T (85

ERTY: 1
(01U (g a,,,-)“"“”:'w'f*}. (21)

The standardization constant K; ; is

K= Z{ Il D) + v — 1)

ITY: T+ o)

O i+ 87) Mg o™ (z’+ﬁ§’j)}

M (i+ 64 +67)
(28)
Letting K () and Ky, ,(I) be

for(h) = M= FIEIES’JI:);)OW -1)

?g)[z,x)q( +,6”) n— m(;|u) -1 (i+6;‘j)
5 (1‘".31':r +ﬁ[")

K c¢an be rewritten as

Ki; =Y Ki([)Ke, ;(1)-

fel

Kﬂl.j(l) =

1

(29)
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Therefore, the Bayes optimal estimators 6; ; of 6 ; are
given by

. 1.7
IEESS {Ka(l)Ke,‘,.(I) (:_(Mﬁ_}) } :

1eL +'611 +B2'J

(30

Then the Bayes optimal estimators of 8; ; is given by the
form of weighted sum of Laplace estimators calculated
for the all case of L.

On the other hand, the posteriot distribution of A is
given by

£01%) = [ (T #eus A1) )ao

A eci=1 i=1

= — ZH { ,\,):(l“)+m—1 ﬁ Kg,’:.(l)} , (31)

where K is given by

-5 [Ti: T((U) + an)Ks, ()
Pntar+as+ - +az)

(32)
lec

The Bayes optimal estimator A; of A is given by

A=

(1) + o

1
K}‘Z{KA(I)HK&J()(n+a1+az+”.

el

(33)
We can see that the Bayes optimal estimators of \; is
also given by the form of weighted sum of Laplace esti-
mators calculated for the all case of 1.

Therefore, we can construct the algorithm to calculate
the Bayes optimal estimator from the Laplace estima-
tors for all I. Although the hidden latent state cannot
be observed from x;, we can get the optimal estimator
from the weighted mixture of all cases of L.

4 Model Specification and Model
Mixture Method from the
Viewpoint of Bayesian Theory

The Bayesian Latent Semantic Analysis proposed in
[8] is very interesting from the viewpoint of accuracy of
estimation from the insufficient size of document data.
However, in the BLSA, the number of class ¢, k, that
is the size of C, is given. In the settings of LSI, PLSI,
SAM, and BLSA, the selection of the number of hid-
den class ¢ is important. This is the problem to select
the order of a hidden class and essentially equivalent to
the model selection problem in documents and words
model. For LSI model, a method using the MDL cri-
terion was proposed {4]. However, the Bayes method is
useful to the model selection problems. In this paper,

+C\’-k)}

we formulate the selection of the order £ based on the
Bayesian statistics, and analyze the performance from
the viewpoints of the asymptotic properties.

4.1 Basic Probability Model

Let m be specifying the order of hidden class Cp,,
where Cp, = {c1,¢2,+++ ¢, }. We call m a model. kn
is the order of the model m.

For X given by (1), each documents «; is assumed to
be drawn from the following mixture model

km d

Pladm)= [ [{3 T Plecsim iy, chmiai=}

=1 j=1
F(BFr Im, ckm)F(AF™ [m)d6y T dA™,  (34)
where 2¥7 A¥m — 1. Similary P(X|m) is given by

km =n

P(X|m) = ff{EIIHP(m.,,|m. o, el aim |

I=1i=1j=1

f(e |m, c,m)f(A*m|m)d9*cndAfm, (35)

Let M be a finite model class and the cardinality
of M be M. That 15, M = {my,ma,---,mar} and
= [M]|. We assume that ky, £ kn+ for m # m/,
m, m' € M. Although the true model m* omitting the
data X exists, we cannot know it previously. Therefore,

. we must select m for modeling the probability structure

of X using (34). It is equivalent to select the order of
dirmension of the hidden class.

We assume that the true model m* emitting docu-
ments and words data X exists in M. The true model
m* is defined by

m =

arg ming &, EIS""‘,,\""‘,P(:c m, 9""‘,A""‘ =Pz
meM
(36)

4.2 Bayesian Formulation of Model Se-
lection
We assume the prior probability over the model class,
P(m). Let L(Am,m) be a loss function between the
decision Am € M (selected model) and each model m €
M. Then the Bayes risk is given by

BR(Am) = Y L(Am,m)P(m|X), (37)
meM
where P(m|X) is given by
_ _ P(X|m)P(m)
PN = S s POCTm) Pm)

Lomem Hicy P(zi|m)P(m)
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If we set a 9-1 loss function such as

0 if Am=m,

L(Am,m) = { 1 if Am#m, (39)

then the Bayes optimal model selection mpp = Am”* is
given by

mpp = Am* = arg,, max P(m|X). (40)

4.3 Method for Calculation of Bayes

Optimal Solutions

To calculate the posterior probability of m, P{m|X),
we must calculate P(X|m) given by (35).

P(X[m) =

[ L T ) 1 atr) ™)

i=1j5=1
CF(OF Im, cfm) F(AF [m)dBET dAF,  (41)

We can assume the Dirichlet prior distribution on the
mixing coefficients A and the beta prior distribution on
f(@:‘,;‘|m, c:‘"‘). The Dirichlet prior distribution as the
prior of A*= of m is given by

f(A*mm) =

oy +az+:--+ag,)
I'{a)T{az) - -T(a,,}

and the bata distribution f(6]'7 |m,c}™) as the prior of
6:;‘ of model m is given by

R )

r £1-1 . Ba-1
£6Imcim) = fOE D (at2)™ ™ (12a7) 7
(43)

Using {42} and (43), we can calculate P(X|m) using
the techniques shown in Section 3. This calculation is
not based on the EM algorithm or other iteration algo-
rithm.

5 Asymptotic Analysis

We can show the following theorem using the asymp-
totic normality of the posterior density [10].
Theorem:
Assuming that the true model m* and true parameters
g*=¢ and A* emitting documents and words data X ex-
ists in M, the model selection by (40) satisfy

Mmpp — m', a.s. (44)

That is, we can asymptotically find the optimal number
of the hidden latent states, k..

6 Conclusions

In this paper, we propose the Bayesian representa-
tion of the probability model for latent semantic anal-
ysis and propose the criterion to select the number of
class (model selection) based on Bayes theory. More-
over we analyze the asymptotic properties. We may use
the results for the hidden Markov model class [11],[12]
to analyze the properties of proposal. This is a future
work.

Becanse the proposed method is not based on estima-
tion of parameters using maximum likelihood, the iter-
ated algorithm, such as the EM algorithm, don’t need.
Computational complexity should be considered as the
future work.
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